Mitochondrial Zea mays Brittle1-1 Is a Major Determinant of the Metabolic Fate of Incoming Sucrose and Mitochondrial Function in Developing Maize Endosperms
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30915089
PubMed Central
PMC6423154
DOI
10.3389/fpls.2019.00242
Knihovny.cz E-zdroje
- Klíčová slova
- ADPglucose, Zea mays, dual targeting, mitochondrial carrier family, mitochondrial retrograde signaling, starch, sucrose synthase,
- Publikační typ
- časopisecké články MeSH
Zea mays Brittle1-1 (ZmBT1-1) is an essential component of the starch biosynthetic machinery in maize endosperms, enabling ADPglucose transport from cytosol to amyloplast in exchange for AMP or ADP. Although ZmBT1-1 has been long considered to be an amyloplast-specific marker, evidence has been provided that ZmBT1-1 is dually localized to plastids and mitochondria (Bahaji et al., 2011b). The mitochondrial localization of ZmBT1-1 suggested that this protein may have as-yet unidentified function(s). To understand the mitochondrial ZmBT1-1 function(s), we produced and characterized transgenic Zmbt1-1 plants expressing ZmBT1-1 delivered specifically to mitochondria. Metabolic and differential proteomic analyses showed down-regulation of sucrose synthase (SuSy)-mediated channeling of sucrose into starch metabolism, and up-regulation of the conversion of sucrose breakdown products generated by cell wall invertase (CWI) into ethanol and alanine, in Zmbt1-1 endosperms compared to wild-type. Electron microscopic analyses of Zmbt1-1 endosperm cells showed gross alterations in the mitochondrial ultrastructure. Notably, the protein expression pattern, metabolic profile, and aberrant mitochondrial ultrastructure of Zmbt1-1 endosperms were rescued by delivering ZmBT1-1 specifically to mitochondria. Results presented here provide evidence that the reduced starch content in Zmbt1-1 endosperms is at least partly due to (i) mitochondrial dysfunction, (ii) enhanced CWI-mediated channeling of sucrose into ethanol and alanine metabolism, and (iii) reduced SuSy-mediated channeling of sucrose into starch metabolism due to the lack of mitochondrial ZmBT1-1. Our results also strongly indicate that (a) mitochondrial ZmBT1-1 is an important determinant of the metabolic fate of sucrose entering the endosperm cells, and (b) plastidic ZmBT1-1 is not the sole ADPglucose transporter in maize endosperm amyloplasts. The possible involvement of mitochondrial ZmBT1-1 in exchange between intramitochondrial AMP and cytosolic ADP is discussed.
Zobrazit více v PubMed
Almagro G., Viale A. M., Montero M., Muñoz F. J., Baroja-Fernández E., Mori H., et al. . (2018). A cAMP/CRP-controlled mechanism for the incorporation of extracellular ADP-glucose in Escherichia coli involving NupC and NupG nucleoside transporters. Sci. Rep. 8:15509. 10.1038/s41598-018-33647-w PubMed DOI PMC
Armstrong C. L., Green C. E., Phillips R. L. (1991). Development and availability of germplasm with high Type II culture formation response. Maize Genet. Coop. Newsl. 65, 92–93.
Atkins C. A., Smith P., Storer P. J. (1997). Reexamination of the intracellular localization of de novo purine synthesis in cowpea nodules. Plant Physiol. 113, 127–135. 10.1104/pp.113.1.127 PubMed DOI PMC
Bahaji A., Li J., Sánchez-López A. M., Baroja-Fernández E., Muñoz F. J., Ovecka M., et al. . (2014). Starch biosynthesis, its regulation and biotechnological approaches to improve crop yields. Biotechnol. Adv. 32, 87–106. 10.1016/j.biotechadv.2013.06.006 PubMed DOI
Bahaji A., Muñoz F. J., Ovecka M., Baroja-Fernández E., Montero M., Li J., et al. . (2011a). Specific delivery of AtBT1 to mitochondria complements the aberrant growth and sterility phenotype of homozygous Atbt1 Arabidopsis mutants. Plant J. 68, 1115–1121. 10.1111/j.1365-313X.2011.04767.x PubMed DOI
Bahaji A., Ovecka M., Bárány I., Risueño M. C., Muñoz F. J., Baroja-Fernández E., et al. . (2011b). Dual targeting to mitochondria and plastids of AtBT1 and ZmBT1, two members of the mitochondrial carrier family. Plant Cell Physiol. 52, 597–609. 10.1093/pcp/pcr019 PubMed DOI
Baroja-Fernández E., Muñoz F. J., Montero M., Etxeberria E., Sesma M. T., Ovecka M., et al. . (2009). Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield. Plant Cell Physiol. 50, 1651–1662. 10.1093/pcp/pcp108 PubMed DOI
Bedhomme M., Hoffmann M., McCarthy E. A., Gambonnet B., Moran R. G., Rébeillé F., et al. . (2005). Folate metabolism in plants: an Arabidopsis homolog of the mammalian mitochondrial folate transporter mediates folate import into chloroplasts. J. Biol. Chem. 280, 34823–34831. 10.1074/jbc.M506045200 PubMed DOI
Bhave M. R., Lawrence S., Barton C., Hannah L. C. (1990). Identification and molecular characterization of shrunken-2 cDNA clones of maize. Plant Cell 2, 581–558. 10.1105/tpc.2.6.581 PubMed DOI PMC
Boehlein S. K., Shaw J. R., Boehlein T. J., Boehlein E. C., Hannah L. C. (2018). Fundamental differences in starch synthesis in the maize leaf, embryo, ovary and endosperm. Plant J. 96, 595–606. 10.1111/tpj.14053 PubMed DOI
Bowsher C. G., Scrase-Field E. F., Esposito S., Emes M. J., Tetlow I. J. (2007). Characterization of ADP-glucose transport across the cereal endosperm amyloplast envelope. J. Exp. Bot. 58, 1321–1332. 10.1093/jxb/erl297 PubMed DOI
Busi M. V., Gomez-Lobato M. E., Rius S. P., Turowski V. R., Casati P., Zabaleta E. J., et al. . (2011). Effect of mitochondrial dysfunction on carbon metabolism and gene expression in flower tissues of Arabidopsis thaliana. Mol. Plant 4, 127–143. 10.1093/mp/ssq065 PubMed DOI
Cakir B., Shiraishi S., Tuncel A., Matsusaka H., Satoh R., Singh S., et al. . (2016). Analysis of the rice ADP-glucose transporter (OsBT1) indicates the presence of regulatory processes in the amyloplast stroma that control ADP-glucose flux into starch. Plant Physiol. 170, 1271–1283. 10.1104/pp.15.01911 PubMed DOI PMC
Cao H., Shannon J. C. (1996). BT1, a protein critical for in vivo starch accumulation in maize endosperm, is not detected in maize endosperm suspension cultures. Physiol. Plant 97, 665–673. 10.1111/j.1399-3054.1996.tb00530.x DOI
Cao H., Sullivan T. D., Boyer C. D., Shannon J. C. (1995). Btl, a structural gene for the major 39–44 kDa amyloplast membrane polypeptides. Physiol. Plant 95, 176–186. 10.1111/j.1399-3054.1995.tb00825.x DOI
Chandel N. S. (2014). Mitochondria as signaling organelles. BMC Biol. 12:34. 10.1186/1741-7007-12-34 PubMed DOI PMC
Cheng W. H., Taliercio E. W., Chourey P. S.. (1996). The miniature1 seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. Plant Cell 8, 971–983. 10.1105/tpc.8.6.971 PubMed DOI PMC
Chourey P. S., Taliercio E. W., Carlson S. J., Ruan Y. L. (1998). Genetic evidence that the two isozymes of sucrose synthase present in developing maize endosperm are critical, one for cell wall integrity and the other for starch biosynthesis. Mol. Gen. Genet. 259, 88–96. 10.1007/s004380050792 PubMed DOI
Christensen A. C., Lyznik A., Mohammed S., Elowsky C. G., Elo A., Yule R., et al. . (2005). Dual-domain, dual-targeting organellar protein presequences in Arabidopsis can use non-AUG start codons. Plant Cell 17, 2805–2816. 10.1105/tpc.105.035287 PubMed DOI PMC
Christensen A. H., Quail P. H. (1996). Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res. 5, 213–218. 10.1007/BF01969712 PubMed DOI
Doehlert D. C., Kuo T. M., Felker F. C. (1988). Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of maize. Plant Physiol. 86, 1013–1019. 10.1104/pp.86.4.1013 PubMed DOI PMC
Duchêne A. M., Giritch A., Hoffmann B., Cognat V., Lancelin D., Peeters N. M., et al. . (2005). Dual targeting is the rule for organellar aminoacyl-tRNA synthetases in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 102, 16484–16489. 10.1073/pnas.0504682102 PubMed DOI PMC
Emanuelsson O., Nielsen H., Brunak S., von Heijne G. (2000). Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 300, 1005–1016. 10.1006/jmbi.2000.3903 PubMed DOI
Fiermonte G., De Leonardis F., Todisco S., Palmieri L., Lasorsa F. M., Palmieri F. (2004). Identification of the mitochondrial ATP-Mg/Pi transporter: bacterial expression, reconstitution, functional characterization, and tissue distribution. J. Biol. Chem. 279, 30722–30730. 10.1074/jbc.M400445200 PubMed DOI
Fukao Y., Hayashi Y., Mano S., Hayashi M., Nishimura M. (2001). Developmental analysis of a putative ATP/ADP carrier protein localized on glyoxysomal membranes during the peroxisome transition in pumpkin cotyledons. Plant Cell Physiol. 42, 835–841. 10.1093/pcp/pce108 PubMed DOI
Goggin D. E., Lipscombe R., Federova E., Millar A. H., Mann A., Atkins C. A., et al. . (2003). Dual intracellular localization and targeting of aminoimidazole ribonucleotide synthetase in cowpea. Plant Physiol. 131, 1033–1041. 10.1104/pp.102.015081 PubMed DOI PMC
Haferkamp I., Schmitz-Esser S. (2012). The plant mitochondrial carrier family: functional and evolutionary aspects. Front. Plant Sci. 3:2. 10.3389/fpls.2012.00002 PubMed DOI PMC
Huang S., Taylor N. L., Narsai R., Eubel H., Whelan J., Millar A. H. (2009). Experimental analysis of the rice mitochondrial proteome, its biogenesis, and heterogeneity. Plant Physiol. 149, 719–734. 10.1104/pp.108.131300 PubMed DOI PMC
Igamberdiev A. U., Kleczkowski L. A. (2006). Equilibration of adenylates in the mitochondrial intermembrane space maintains respiration and regulates cytosolic metabolism. J. Exp. Bot. 57, 2133–2141. 10.1093/jxb/erl006 PubMed DOI
Kirchberger S., Leroch M., Huynen M. A., Wahl M., Neuhaus H. E., Tjaden J. (2007). Molecular and biochemical analysis of the plastidic ADP-glucose transporter (ZmBT1) from Zea mays. J. Biol. Chem. 282, 22481–22491. 10.1074/jbc.M702484200 PubMed DOI
Kleczkowski L. A. (1996). Back to the drawing board: redefining starch synthesis in cereals. Trends Plant Sci. 1, 363–364. 10.1016/1360-1385(96)83884-2 DOI
Kmiec B., Teixeira P. F., Glaser E. (2014). Shredding the signal: targeting peptide degradation in mitochondria and chloroplasts. Trends Plant Sci. 19, 771–778. 10.1016/j.tplants.2014.09.004 PubMed DOI
Krath B. N., Hove-Jensen B. (1999). Organellar and cytosolic localization of four phosphoribosyl diphosphate synthase isozymes in spinach. Plant Physiol. 119, 497–506. 10.1104/pp.119.2.497 PubMed DOI PMC
Lee C. P., Taylor N. L., Millar A. H. (2013). Recent advances in the composition and heterogeneity of the Arabidopsis mitochondrial proteome. Front. Plant Sci. 4:4. 10.3389/fpls.2013.00004 PubMed DOI PMC
Li H. M., Sullivan T. D., Keegstra K. (1992). Information for targeting to the chloroplastic inner envelope membrane is contained in the mature region of the maize Bt1-encoded protein. J. Biol. Chem. 267, 18999–19004. PubMed
Li J., Baroja-Fernández E., Bahaji A., Muñoz F. J., Ovecka M., Montero M., et al. . (2013). Enhancing sucrose synthase activity results in increased levels of starch and ADP-glucose in maize (Zea mays L.) seed endosperms. Plant Cell Physiol. 54, 282–294. 10.1093/pcp/pcs180 PubMed DOI
Licausi F., van Dongen J. T., Giuntoli B., Novi G., Santaniello A., Geigenberger P., et al. . (2010). HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J. 62, 302–315. 10.1111/j.1365-313X.2010.04149.x PubMed DOI
Loiret F. G., Grimm B., Hajirezaei M. R., Kleiner D., Ortega E. (2009). Inoculation of sugarcane with Pantoea sp. increases amino acid contents in shoot tissues; serine, alanine, glutamine and asparagine permit concomitantly ammonium excretion and nitrogenase activity of the bacterium. J. Plant Physiol. 166, 1152–1161. 10.1016/j.jplph.2009.01.002 PubMed DOI
Mangelsdorf P. C. (1926). The genetics and morphology of some endosperm characters in maize. Conn. Agric. Exp. Stn. Bull. 279, 509–614.
Méchin V., Thévenot C., Le Guilloux M., Prioul J.-L., Damerval C. (2007). Developmental analysis of maize endosperm proteome suggests a pivotal role for pyruvate orthophosphate dikinase. Plant Physiol. 143, 1203–1219. 10.1104/pp.106.092148 PubMed DOI PMC
Miyashita Y., Good A. G. (2008). Contribution of the GABA shunt to hypoxia-induced alanine accumulation in roots of Arabidopsis thaliana. Plant Cell Physiol. 49, 92–102. 10.1093/pcp/pcm171 PubMed DOI
Naeem M., Tetlow I. J., Emes M. J. (1997). Starch synthesis in amyloplasts purified from developing potato tubers. Plant J. 11, 1095–1103. 10.1046/j.1365-313X.1997.11051095.x DOI
Niwa Y., Hirano T., Yoshimoto K., Shimizu M., Kobayashi H. (1999). Non-invasive quantitative detection and applications of non-toxic, S65T-type green fluorescent protein in living plants. Plant J. 18, 455–463. 10.1046/j.1365-313X.1999.00464.x PubMed DOI
Palmieri L., Arrigoni R., Blanco E., Carrari F., Zanor M. I., Studart-Guimaraes C., et al. . (2006). Molecular identification of an Arabidopsis S-adenosylmethionine transporter. Analysis of organ distribution, bacterial expression, reconstitution into liposomes, and functional characterization. Plant Physiol. 142, 855–865. 10.1104/pp.106.086975 PubMed DOI PMC
Paumard P. (2002). The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J. 21, 221–230. 10.1093/emboj/21.3.221 PubMed DOI PMC
Peeters N., Small I. (2001). Dual targeting to mitochondria and chloroplasts. Biochim. Biophys. Acta Mol. Cell Res. 54–63. 10.1016/S0167-4889(01)00146-X PubMed DOI
Pozueta-Romero J., Ardila F., Akazawa T. (1991). ADP-glucose transport by the chloroplast adenylate translocator is linked to starch biosynthesis. Plant Physiol. 97, 1565–1572. 10.1104/pp.97.4.1565 PubMed DOI PMC
Prioul J. L., Méchin V., Lessard P., Thévenot C., Grimmer M., Chateau-Joubert S., et al. . (2008). A joint transcriptomic, proteomic and metabolic analysis of maize endosperm development and starch filling. Plant Biotechnol. J. 6, 855–869. 10.1111/j.1467-7652.2008.00368.x PubMed DOI
Reynolds E. S. (1963). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212. 10.1083/jcb.17.1.208 PubMed DOI PMC
Rhoads D. M., Subbaiah C. C. (2007). Mitochondrial retrograde regulation in plants. Mitochondrion 7, 177–194. 10.1016/j.mito.2007.01.002 PubMed DOI
Sánchez-López Á. M., Bahaji A., De Diego N., Baslam M., Li J., Muñoz F. J., et al. . (2016). Arabidopsis responds to Alternaria alternata volatiles by triggering plastid phosphoglucose isomerase-independent mechanisms. Plant Physiol. 172, 1989–2001. 10.1104/pp.16.00945 PubMed DOI PMC
Seguí-Simarro J. M. (2015). High-pressure freezing and freeze substitution of in vivo and in vitro cultured plant samples, in Plant Microtechniques and Protocols, eds Yeung E. C. T., Stasolla C., Sumner M. J., Huang B. Q. (Cham: Springer International Publishing; ), 117–134.
Shannon J. C., Pien F., Liu K. (1996). Nucleotides and nucleotide sugars in developing maize endosperms (Synthesis of ADP-glucose in brittle-1). Plant Physiol. 110, 835–843. 10.1104/pp.110.3.835 PubMed DOI PMC
Shannon J. C., Pien F. M M., Cao H., Liu K. C. (1998). Brittle-1, an adenylate translocator, facilitates transfer of extraplastidial synthesized ADP–glucose into amyloplasts of maize endosperms. Plant Physiol. 117, 1235–1252. 10.1104/pp.117.4.1235 PubMed DOI PMC
Shingaki-Wells R., Millar A. H., Whelan J., Narsai R. (2014). What happens to plant mitochondria under low oxygen? An omics review of the responses to low oxygen and reoxygenation. Plant Cell Environ. 37, 2260–2277. 10.1111/pce.12312 PubMed DOI
Shockey J. M., Fulda M. S., Browse J. (2003). Arabidopsis contains a large superfamily of acyl-activating enzymes. Phylogenetic and biochemical analysis reveals a new class of acyl-coenzyme A synthetases. Plant Physiol. 132, 1065–1076. 10.1104/pp.103.020552 PubMed DOI PMC
Smith P. M. C., Mann A. J., Goggin D. E., Atkins C. A. (1998). Air synthetase in cowpea nodules: a single gene product targeted to two organelles? Plant Mol. Biol. 36, 811–820. 10.1023/A:1005969830314 PubMed DOI
Sullivan T. D., Kaneko Y. (1995). The maize brittle1 gene encodes amyloplast membrane polypeptides. Planta An Int. J. Plant Biol. 196, 477–484. 10.1007/BF00203647 PubMed DOI
Sullivan T. D., Strelow L. I., Illingworth C. A., Phillips R. L., Nelson O. E. (1991). Analysis of maize brittle-1 alleles and a defective suppressor-mutator-induced mutable allele. Plant Cell 3, 1337–1348. 10.1105/tpc.3.12.1337 PubMed DOI PMC
Tarasenko V. I., Katyshev A. I., Yakovleva T. V., Garnik E. Y., Chernikova V. V., Konstantinov Y. M., et al. (2016). RPOTmp, an Arabidopsis RNA polymerase with dual targeting, plays an important role in mitochondria, but not in chloroplasts. J. Exp. Bot. 67, 5657–5669. 10.1093/jxb/erw327 PubMed DOI
Taylor E. B. (2017). Functional properties of the mitochondrial carrier system. Trends Cell Biol. 27, 663–644. 10.1016/j.tcb.2017.04.004 PubMed DOI PMC
Thévenot C., Simond-Côte E., Reyss A., Manicacci D., Trouverie J., Le Guilloux M., et al. . (2005). QTLs for enzyme activities and soluble carbohydrates involved in starch accumulation during grain filling in maize. J. Exp. Bot. 56, 945–958. 10.1093/jxb/eri087 PubMed DOI
Thimm O., Bläsing O., Gibon Y., Nagel A., Meyer S., Krüger P., et al. . (2004). MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37, 914–939. 10.1111/j.1365-313X.2004.02016.x PubMed DOI
Todisco S., Agrimi G., Castegna A., Palmieri F. (2006). Identification of the mitochondrial NAD+ transporter in Saccharomyces cerevisiae. J. Biol. Chem. 281, 1524–1531. 10.1074/jbc.M510425200 PubMed DOI
Wang K., Frame B. (2009). Biolistic gun-mediated maize genetic transformation. Methods Mol. Biol. 526, 29–45. 10.1007/978-1-59745-494-0_3 PubMed DOI
Wiseman A., Gillham N. W., Boynton J. E. (1977). Nuclear mutations affecting mitochondrial structure and function in Chlamydomonas. J. Cell Biol. 73, 56–77. 10.1083/jcb.73.1.56 PubMed DOI PMC
Zrenner R., Stitt M., Sonnewald U., Boldt R. (2006). Pyrimidine and purine biosynthesis and degradation in plants. Annu. Rev. Plant Biol. 57, 805–836. 10.1146/annurev.arplant.57.032905.105421 PubMed DOI