The free-living flagellate Paratrimastix pyriformis uses a distinct mitochondrial carrier to balance adenine nucleotide pools
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MC_UU_00028/2
Medical Research Council - United Kingdom
MC_UU_00028/2UK
Medical Research Council - United Kingdom
PubMed
37192692
PubMed Central
PMC10251735
DOI
10.1016/j.abb.2023.109638
PII: S0003-9861(23)00137-6
Knihovny.cz E-zdroje
- Klíčová slova
- Mitochondrial carrier, Mitochondrion-related organelle, Nucleoside/nucleotide transport, Paratrimastix pyriformis,
- MeSH
- adenosinmonofosfát metabolismus MeSH
- adenosintrifosfát metabolismus MeSH
- lidé MeSH
- mitochondriální membrány metabolismus MeSH
- mitochondrie metabolismus MeSH
- paraziti * metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosinmonofosfát MeSH
- adenosintrifosfát MeSH
Paratrimastix pyriformis is a free-living flagellate thriving in low-oxygen freshwater sediments. It belongs to the group Metamonada along with human parasites, such as Giardia and Trichomonas. Like other metamonads, P. pyriformis has a mitochondrion-related organelle (MRO) which in this protist is primarily involved in one-carbon folate metabolism. The MRO contains four members of the solute carrier family 25 (SLC25) responsible for the exchange of metabolites across the mitochondrial inner membrane. Here, we characterise the function of the adenine nucleotide carrier PpMC1 by thermostability shift and transport assays. We show that it transports ATP, ADP and, to a lesser extent, AMP, but not phosphate. The carrier is distinct in function and origin from both ADP/ATP carriers and ATP-Mg/phosphate carriers, and it most likely represents a distinct class of adenine nucleotide carriers.
Charles University Faculty of Science Department of Parasitology BIOCEV Vestec 252 50 Czech Republic
Zobrazit více v PubMed
Kunji E.R.S., Aleksandrova A., King M.S., Majd H., Ashton V.L., Cerson E., Springett R., Kibalchenko M., Tavoulari S., Crichton P.G., Ruprecht J.J. The transport mechanism of the mitochondrial ADP/ATP carrier. Biochim. Biophys. Acta. 2016;1863:2379–2393. doi: 10.1016/J.BBAMCR.2016.03.015. PubMed DOI
Hjort K., Goldberg A.V., Tsaousis A.D., Hirt R.P., Embley T.M. Diversity and reductive evolution of mitochondria among microbial eukaryotes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010;365:713–727. doi: 10.1098/RSTB.2009.0224. PubMed DOI PMC
Kang P.J., Ostermann J., Shilling J., Neupert W., Craig E.A., Pfanner N. Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature. 1990;348:137–143. doi: 10.1038/348137a0. PubMed DOI
Ruprecht J.J., Kunji E.R.S. The SLC25 mitochondrial carrier family: structure and mechanism. Trends Biochem. Sci. 2020;45:244–258. doi: 10.1016/J.TIBS.2019.11.001. PubMed DOI PMC
Palmieri F., Monné M. Discoveries, metabolic roles and diseases of mitochondrial carriers: a review. Biochim. Biophys. Acta. 2016;1863:2362–2378. doi: 10.1016/J.BBAMCR.2016.03.007. PubMed DOI
King M.S., Tavoulari S., Mavridou V., King A.C., Mifsud J., Kunji E.R.S. A single cysteine residue in the translocation pathway of the mitosomal ADP/ATP carrier from Cryptosporidium parvum confers a broad nucleotide specificity. Int. J. Mol. Sci. 2020;21:8971. doi: 10.3390/IJMS21238971. PubMed DOI PMC
Williams B.A.P., Haferkamp I., Keeling P.J. An ADP/ATP-Specific mitochondrial carrier protein in the microsporidian Antonospora locustae. J. Mol. Biol. 2008;375:1249–1257. doi: 10.1016/J.JMB.2007.11.005. PubMed DOI
Saraste M., Walker J.E. Internal sequence repeats and the path of polypeptide in mitochondrial ADP/ATP translocase. FEBS Lett. 1982;144:250–254. doi: 10.1016/0014-5793(82)80648-0. PubMed DOI
Pebay-Peyroula E., Dahout-Gonzalez C., Kahn R., Trézéguet V., Lauquin G.J.M., Brandolin G. Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature. 2003;426:39–44. doi: 10.1038/nature02056. PubMed DOI
Ruprecht J.J., Kunji E.R. Structural changes in the transport cycle of the mitochondrial ADP/ATP carrier. Curr. Opin. Struct. Biol. 2019;57:135–144. doi: 10.1016/J.SBI.2019.03.029. PubMed DOI PMC
Nelson D.R., Felix C.M., Swanson J.M. Highly conserved charge-pair networks in the mitochondrial carrier family. J. Mol. Biol. 1998;277:285–308. doi: 10.1006/JMBI.1997.1594. PubMed DOI
Ruprecht J.J., Hellawell A.M., Harding M., Crichton P.G., McCoy A.J., Kunji E.R.S. Structures of yeast mitochondrial ADP/ATP carriers support a domain-based alternating-access transport mechanism. Proc. Natl. Acad. Sci. U. S. A. 2014;111:E426–E434. doi: 10.1073/PNAS.1320692111/SUPPL_FILE/SAPP.PDF. PubMed DOI PMC
King M.S., Kerr M., Crichton P.G., Springett R., Kunji E.R.S. Formation of a cytoplasmic salt bridge network in the matrix state is a fundamental step in the transport mechanism of the mitochondrial ADP/ATP carrier. Biochim. Biophys. Acta. 2016;1857:14–22. doi: 10.1016/J.BBABIO.2015.09.013. PubMed DOI PMC
Robinson A.J., Overy C., Kunji E.R.S. The mechanism of transport by mitochondrial carriers based on analysis of symmetry. Proc. Natl. Acad. Sci. U. S. A. 2008;105:17766–17771. doi: 10.1073/PNAS.0809580105/SUPPL_FILE/APPENDIX_PDF.PDF. PubMed DOI PMC
Ruprecht J.J., King M.S., Zögg T., Aleksandrova A.A., Pardon E., Crichton P.G., Steyaert J., Kunji E.R.S. The molecular mechanism of transport by the mitochondrial ADP/ATP carrier. Cell. 2019;176:435–447.e15. doi: 10.1016/j.cell.2018.11.025. PubMed DOI PMC
Pfaff E., Klingenberg M. Adenine nucleotide translocation of mitochondria. Eur. J. Biochem. 1968;6:66–79. doi: 10.1111/J.1432-1033.1968.TB00420.X. PubMed DOI
Mifsud J., Ravaud S., Krammer E.M., Chipot C., Kunji E.R.S., Pebay-Peyroula E., Dehez F. The substrate specificity of the human ADP/ATP carrier AAC1. Mol. Membr. Biol. 2013;30:160–168. doi: 10.3109/09687688.2012.745175. PubMed DOI
García-Catalán S., González-Moreno L., del Arco A. Ca2+-regulated mitochondrial carriers of ATP-Mg2+/Pi: evolutionary insights in protozoans. Biochim. Biophys. Acta Mol. Cell Res. 2021;1868 doi: 10.1016/J.BBAMCR.2021.119038. PubMed DOI
van der Giezen M., Slotboom D.J., Horner D.S., Dyal P.L., Harding M., Xue G.P., Embley T.M., Kunji E.R.S. Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles. EMBO J. 2002;21:572–579. doi: 10.1093/EMBOJ/21.4.572. PubMed DOI PMC
Harborne S.P.D., King M.S., Crichton P.G., Kunji E.R.S. Calcium regulation of the human mitochondrial ATP-Mg/Pi carrier SLC25A24 uses a locking pin mechanism. Sci. Rep. 2017;7:1–13. doi: 10.1038/srep45383. PubMed DOI PMC
Harborne S.P.D., Kunji E.R.S. Calcium-regulated mitochondrial ATP-Mg/Pi carriers evolved from a fusion of an EF-hand regulatory domain with a mitochondrial ADP/ATP carrier-like domain. IUBMB Life. 2018;70:1222–1232. doi: 10.1002/IUB.1931. PubMed DOI PMC
Fiermonte G., de Leonardis F., Todisco S., Palmieri L., Lasorsa F.M., Palmieri F. Identification of the mitochondrial ATP-Mg/Pi transporter. Bacterial expression, reconstitution, functional characterization, and tissue distribution. J. Biol. Chem. 2004;279:30722–30730. doi: 10.1074/JBC.M400445200. PubMed DOI
Monné M., Miniero D.V., Obata T., Daddabbo L., Palmieri L., Vozza A., Nicolardi M.C., Fernie A.R., Palmieri F. Functional characterization and organ distribution of three mitochondrial ATP-Mg/Pi carriers in Arabidopsis thaliana. Biochim. Biophys. Acta. 2015;1847:1220–1230. doi: 10.1016/J.BBABIO.2015.06.015. PubMed DOI
Traba J., Froschauer E.M., Wiesenberger G., Satrústegui J., del Arco A. Yeast mitochondria import ATP through the calcium-dependent ATP-Mg/Pi carrier Sal1p, and are ATP consumers during aerobic growth in glucose. Mol. Microbiol. 2008;69:570–585. doi: 10.1111/J.1365-2958.2008.06300.X. PubMed DOI
Traba J., Satrústegui J., del Arco A. Characterization of SCaMC-3-like/slc25a41, a novel calcium-independent mitochondrial ATP-Mg/Pi carrier. Biochem. J. 2009;418:125–133. doi: 10.1042/BJ20081262. PubMed DOI
Tjaden J., Haferkamp I., Boxma B., Tielens A.G.M., Huynen M., Hackstein J.H.P. A divergent ADP/ATP carrier in the hydrogenosomes of Trichomonas gallinae argues for an independent origin of these organelles. Mol. Microbiol. 2004;51:1439–1446. doi: 10.1111/J.1365-2958.2004.03918.X. PubMed DOI
Chan K.W., Slotboom D.J., Cox S., Embley T.M., Fabre O., van der Giezen M., Harding M., Horner D.S., Kunji E.R.S., León-Avila G., Tovar J. A novel ADP/ATP transporter in the mitosome of the microaerophilic human parasite Entamoeba histolytica. Curr. Biol. 2005;15:737–742. doi: 10.1016/j.cub.2005.02.068. PubMed DOI
Mi-Ichi F., Nozawa A., Yoshida H., Tozawa Y., Nozaki T. Evidence that the Entamoeba histolytica mitochondrial carrier family links mitosomal and cytosolic pathways through exchange of 3’-phosphoadenosine 5’-phosphosulfate and ATP. Eukaryot. Cell. 2015;14:1144–1150. doi: 10.1128/EC.00130-15/ASSET/0138F990-6D11-439C-8111-D71B19D46776/ASSETS/GRAPHIC/ZEK9990944930005.JPEG. PubMed DOI PMC
Hampl V., Hug L., Leigh J.W., Dacks J.B., Lang B.F., Simpson A.G.B., Roger A.J. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups,”. Proc. Natl. Acad. Sci. U. S. A. 2009;106:3859–3864. doi: 10.1073/PNAS.0807880106/SUPPL_FILE/0807880106SI.PDF. PubMed DOI PMC
Zítek J., Füssy Z., Treitli S.C., Peña-Diaz P., Vaitová Z., Zavadska D., Harant K., Hampl V. Reduced mitochondria provide an essential function for the cytosolic methionine cycle. Curr. Biol. 2022;32:5057–5068. doi: 10.1016/J.CUB.2022.10.028. PubMed DOI PMC
Braymer J.J., Freibert S.A., Rakwalska-Bange M., Lill R. Mechanistic concepts of iron-sulfur protein biogenesis in Biology. Biochim. Biophys. Acta Mol. Cell Res. 2021;1868 doi: 10.1016/J.BBAMCR.2020.118863. PubMed DOI
Zubáčová Z., Novák L., Bublíková J., Vacek V., Fousek J., Rídl J., Tachezy J., Doležal P., Vlček Č., Hampl V. The mitochondrion-like organelle of Trimastix pyriformis contains the complete Glycine cleavage system. PLoS One. 2013;8 doi: 10.1371/JOURNAL.PONE.0055417. PubMed DOI PMC
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., Bridgland A., Meyer C., Kohl S.A.A., Ballard A.J., Cowie A., Romera-Paredes B., Nikolov S., Jain R., Adler J., Back T., Petersen S., Reiman D., Clancy E., Zielinski M., Steinegger M., Pacholska M., Berghammer T., Bodenstein S., Silver D., Vinyals O., Senior A.W., Kavukcuoglu K., Kohli P., Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:7873. doi: 10.1038/s41586-021-03819-2. 596 (2021) 583–589. PubMed DOI PMC
Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., De Beer T.A.P., Rempfer C., Bordoli L., Lepore R., Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296. doi: 10.1093/NAR/GKY427. –W303. PubMed DOI PMC
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/MOLBEV/MST010. PubMed DOI PMC
Criscuolo A., Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 2010;10:1–21. doi: 10.1186/1471-2148-10-210/FIGURES/9. PubMed DOI PMC
Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/MOLBEV/MSU300. PubMed DOI PMC
King M.S., Kunji E.R.S. Expression and purification of membrane proteins in Saccharomyces cerevisiae. Methods Mol. Biol. 2020;2127:47–61. doi: 10.1007/978-1-0716-0373-4_4/COVER. PubMed DOI
Jaiquel Baron S., King M.S., Kunji E.R.S., Schirris T.J.J. Characterization of drug-induced human mitochondrial ADP/ATP carrier inhibition. Theranostics. 2021;11:5077–5091. doi: 10.7150/THNO.54936. PubMed DOI PMC
Majd H., King M.S., Palmer S.M., Smith A.C., Elbourne L.D.H., Paulsen I.T., Sharples D., Henderson P.J.F., Kunji E.R.S. Screening of candidate substrates and coupling ions of transporters by thermostability shift assays. Elife. 2018;7 doi: 10.7554/ELIFE.38821. PubMed DOI PMC
Alexandrov A.I., Mileni M., Chien E.Y.T., Hanson M.A., Stevens R.C. Microscale fluorescent thermal stability assay for membrane proteins. Structure. 2008;16:351–359. doi: 10.1016/j.str.2008.02.004. PubMed DOI
Crichton P.G., Lee Y., Ruprecht J.J., Cerson E., Thangaratnarajah C., King M.S., Kunji E.R.S. Trends in thermostability provide information on the nature of substrate, inhibitor, and lipid interactions with mitochondrial carriers. J. Biol. Chem. 2015;290:8206–8217. doi: 10.1074/jbc.M114.616607. PubMed DOI PMC
Harborne S.P.D., King M.S., Kunji E.R.S. Thermostability assays: a generic and versatile tool for studying the functional and structural properties of membrane proteins in detergents. Methods Mol. Biol. 2020;2168:105–121. doi: 10.1007/978-1-0716-0724-4_5/COVER. PubMed DOI
Peña-Diaz P., Pelosi L., Ebikeme C., Colasante C., Gao F., Bringaud F., Voncken F. Functional characterization of TbMCP5, a conserved and essential ADP/ATP carrier present in the mitochondrion of the human pathogen trypanosoma brucei. J. Biol. Chem. 2012;287 doi: 10.1074/JBC.M112.404699. PubMed DOI PMC
Monné M., Chan K.W., Slotboom D.-J., Kunji E.R.S. Functional expression of eukaryotic membrane proteins in Lactococcus lactis. Protein Sci. 2005;14:3048. doi: 10.1110/PS.051689905. PubMed DOI PMC
Lorenz A., Lorenz M., Vothknecht U.C., Niopek-Witz S., Neuhaus H.E., Haferkamp I. In vitro analyses of mitochondrial ATP/phosphate carriers from Arabidopsis thaliana revealed unexpected Ca2+-effects. BMC Plant Biol. 2015;15 doi: 10.1186/S12870-015-0616-0. PubMed DOI PMC
Robinson A.J., Kunji E.R.S. Mitochondrial carriers in the cytoplasmic state have a common substrate binding site. Proc. Natl. Acad. Sci. U. S. A. 2006;103:2617–2622. doi: 10.1073/PNAS.0509994103/SUPPL_FILE/09994TABLE3.PDF. PubMed DOI PMC
Mavridou V., King M.S., Tavoulari S., Ruprecht J.J., Palmer S.M., Kunji E.R.S. Substrate binding in the mitochondrial ADP/ATP carrier is a step-wise process guiding the structural changes in the transport cycle. Nat. Commun. 2022;13:3585. doi: 10.1038/s41467-022-31366-5. PubMed DOI PMC
Kunji E.R.S., Robinson A.J. The conserved substrate binding site of mitochondrial carriers. Biochim. Biophys. Acta. 2006;1757:1237–1248. doi: 10.1016/J.BBABIO.2006.03.021. PubMed DOI
Tavoulari S., Schirris T.J.J., Mavridou V., Thangaratnarajah C., King M.S., Jones D.T.D., Ding S., Fearnley I.M., Kunji E.R.S. Key features of inhibitor binding to the human mitochondrial pyruvate carrier hetero-dimer. Mol. Metabol. 2022;60 doi: 10.1016/J.MOLMET.2022.101469. PubMed DOI PMC
Jedelský P.L., Doležal P., Rada P., Pyrih J., Šmíd O., Hrdý I., Šedinová M., Marcinčiková M., Voleman L., Perry A.J., Beltrán N.C., Lithgow T., Tachezy J. The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis. PLoS One. 2011;6 doi: 10.1371/JOURNAL.PONE.0017285. PubMed DOI PMC
Füssy Z., Vinopalová M., Treitli S.C., Pánek T., Smejkalová P., Čepička I., Doležal P., Hampl V. Retortamonads from vertebrate hosts share features of anaerobic metabolism and pre-adaptations to parasitism with diplomonads. Parasitol. Int. 2021;82 doi: 10.1016/J.PARINT.2021.102308. PubMed DOI PMC
Buono M.J., Kolkhorst F.W. Estimating ATP resynthesis during a marathon run: a method to introduce metabolism. Adv. Physiol. Educ. 2001;25:70–71. doi: 10.1152/ADVANCES.2001.25.2.70. DOI
Genomics of Preaxostyla Flagellates Illuminates the Path Towards the Loss of Mitochondria
Comparative analysis of mitochondrion-related organelles in anaerobic amoebozoans
figshare
10.6084/m9.figshare.22317793