The free-living flagellate Paratrimastix pyriformis uses a distinct mitochondrial carrier to balance adenine nucleotide pools

. 2023 Jul 01 ; 742 () : 109638. [epub] 20230514

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37192692

Grantová podpora
MC_UU_00028/2 Medical Research Council - United Kingdom
MC_UU_00028/2UK Medical Research Council - United Kingdom

Odkazy

PubMed 37192692
PubMed Central PMC10251735
DOI 10.1016/j.abb.2023.109638
PII: S0003-9861(23)00137-6
Knihovny.cz E-zdroje

Paratrimastix pyriformis is a free-living flagellate thriving in low-oxygen freshwater sediments. It belongs to the group Metamonada along with human parasites, such as Giardia and Trichomonas. Like other metamonads, P. pyriformis has a mitochondrion-related organelle (MRO) which in this protist is primarily involved in one-carbon folate metabolism. The MRO contains four members of the solute carrier family 25 (SLC25) responsible for the exchange of metabolites across the mitochondrial inner membrane. Here, we characterise the function of the adenine nucleotide carrier PpMC1 by thermostability shift and transport assays. We show that it transports ATP, ADP and, to a lesser extent, AMP, but not phosphate. The carrier is distinct in function and origin from both ADP/ATP carriers and ATP-Mg/phosphate carriers, and it most likely represents a distinct class of adenine nucleotide carriers.

Zobrazit více v PubMed

Kunji E.R.S., Aleksandrova A., King M.S., Majd H., Ashton V.L., Cerson E., Springett R., Kibalchenko M., Tavoulari S., Crichton P.G., Ruprecht J.J. The transport mechanism of the mitochondrial ADP/ATP carrier. Biochim. Biophys. Acta. 2016;1863:2379–2393. doi: 10.1016/J.BBAMCR.2016.03.015. PubMed DOI

Hjort K., Goldberg A.V., Tsaousis A.D., Hirt R.P., Embley T.M. Diversity and reductive evolution of mitochondria among microbial eukaryotes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010;365:713–727. doi: 10.1098/RSTB.2009.0224. PubMed DOI PMC

Kang P.J., Ostermann J., Shilling J., Neupert W., Craig E.A., Pfanner N. Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature. 1990;348:137–143. doi: 10.1038/348137a0. PubMed DOI

Ruprecht J.J., Kunji E.R.S. The SLC25 mitochondrial carrier family: structure and mechanism. Trends Biochem. Sci. 2020;45:244–258. doi: 10.1016/J.TIBS.2019.11.001. PubMed DOI PMC

Palmieri F., Monné M. Discoveries, metabolic roles and diseases of mitochondrial carriers: a review. Biochim. Biophys. Acta. 2016;1863:2362–2378. doi: 10.1016/J.BBAMCR.2016.03.007. PubMed DOI

King M.S., Tavoulari S., Mavridou V., King A.C., Mifsud J., Kunji E.R.S. A single cysteine residue in the translocation pathway of the mitosomal ADP/ATP carrier from Cryptosporidium parvum confers a broad nucleotide specificity. Int. J. Mol. Sci. 2020;21:8971. doi: 10.3390/IJMS21238971. PubMed DOI PMC

Williams B.A.P., Haferkamp I., Keeling P.J. An ADP/ATP-Specific mitochondrial carrier protein in the microsporidian Antonospora locustae. J. Mol. Biol. 2008;375:1249–1257. doi: 10.1016/J.JMB.2007.11.005. PubMed DOI

Saraste M., Walker J.E. Internal sequence repeats and the path of polypeptide in mitochondrial ADP/ATP translocase. FEBS Lett. 1982;144:250–254. doi: 10.1016/0014-5793(82)80648-0. PubMed DOI

Pebay-Peyroula E., Dahout-Gonzalez C., Kahn R., Trézéguet V., Lauquin G.J.M., Brandolin G. Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature. 2003;426:39–44. doi: 10.1038/nature02056. PubMed DOI

Ruprecht J.J., Kunji E.R. Structural changes in the transport cycle of the mitochondrial ADP/ATP carrier. Curr. Opin. Struct. Biol. 2019;57:135–144. doi: 10.1016/J.SBI.2019.03.029. PubMed DOI PMC

Nelson D.R., Felix C.M., Swanson J.M. Highly conserved charge-pair networks in the mitochondrial carrier family. J. Mol. Biol. 1998;277:285–308. doi: 10.1006/JMBI.1997.1594. PubMed DOI

Ruprecht J.J., Hellawell A.M., Harding M., Crichton P.G., McCoy A.J., Kunji E.R.S. Structures of yeast mitochondrial ADP/ATP carriers support a domain-based alternating-access transport mechanism. Proc. Natl. Acad. Sci. U. S. A. 2014;111:E426–E434. doi: 10.1073/PNAS.1320692111/SUPPL_FILE/SAPP.PDF. PubMed DOI PMC

King M.S., Kerr M., Crichton P.G., Springett R., Kunji E.R.S. Formation of a cytoplasmic salt bridge network in the matrix state is a fundamental step in the transport mechanism of the mitochondrial ADP/ATP carrier. Biochim. Biophys. Acta. 2016;1857:14–22. doi: 10.1016/J.BBABIO.2015.09.013. PubMed DOI PMC

Robinson A.J., Overy C., Kunji E.R.S. The mechanism of transport by mitochondrial carriers based on analysis of symmetry. Proc. Natl. Acad. Sci. U. S. A. 2008;105:17766–17771. doi: 10.1073/PNAS.0809580105/SUPPL_FILE/APPENDIX_PDF.PDF. PubMed DOI PMC

Ruprecht J.J., King M.S., Zögg T., Aleksandrova A.A., Pardon E., Crichton P.G., Steyaert J., Kunji E.R.S. The molecular mechanism of transport by the mitochondrial ADP/ATP carrier. Cell. 2019;176:435–447.e15. doi: 10.1016/j.cell.2018.11.025. PubMed DOI PMC

Pfaff E., Klingenberg M. Adenine nucleotide translocation of mitochondria. Eur. J. Biochem. 1968;6:66–79. doi: 10.1111/J.1432-1033.1968.TB00420.X. PubMed DOI

Mifsud J., Ravaud S., Krammer E.M., Chipot C., Kunji E.R.S., Pebay-Peyroula E., Dehez F. The substrate specificity of the human ADP/ATP carrier AAC1. Mol. Membr. Biol. 2013;30:160–168. doi: 10.3109/09687688.2012.745175. PubMed DOI

García-Catalán S., González-Moreno L., del Arco A. Ca2+-regulated mitochondrial carriers of ATP-Mg2+/Pi: evolutionary insights in protozoans. Biochim. Biophys. Acta Mol. Cell Res. 2021;1868 doi: 10.1016/J.BBAMCR.2021.119038. PubMed DOI

van der Giezen M., Slotboom D.J., Horner D.S., Dyal P.L., Harding M., Xue G.P., Embley T.M., Kunji E.R.S. Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles. EMBO J. 2002;21:572–579. doi: 10.1093/EMBOJ/21.4.572. PubMed DOI PMC

Harborne S.P.D., King M.S., Crichton P.G., Kunji E.R.S. Calcium regulation of the human mitochondrial ATP-Mg/Pi carrier SLC25A24 uses a locking pin mechanism. Sci. Rep. 2017;7:1–13. doi: 10.1038/srep45383. PubMed DOI PMC

Harborne S.P.D., Kunji E.R.S. Calcium-regulated mitochondrial ATP-Mg/Pi carriers evolved from a fusion of an EF-hand regulatory domain with a mitochondrial ADP/ATP carrier-like domain. IUBMB Life. 2018;70:1222–1232. doi: 10.1002/IUB.1931. PubMed DOI PMC

Fiermonte G., de Leonardis F., Todisco S., Palmieri L., Lasorsa F.M., Palmieri F. Identification of the mitochondrial ATP-Mg/Pi transporter. Bacterial expression, reconstitution, functional characterization, and tissue distribution. J. Biol. Chem. 2004;279:30722–30730. doi: 10.1074/JBC.M400445200. PubMed DOI

Monné M., Miniero D.V., Obata T., Daddabbo L., Palmieri L., Vozza A., Nicolardi M.C., Fernie A.R., Palmieri F. Functional characterization and organ distribution of three mitochondrial ATP-Mg/Pi carriers in Arabidopsis thaliana. Biochim. Biophys. Acta. 2015;1847:1220–1230. doi: 10.1016/J.BBABIO.2015.06.015. PubMed DOI

Traba J., Froschauer E.M., Wiesenberger G., Satrústegui J., del Arco A. Yeast mitochondria import ATP through the calcium-dependent ATP-Mg/Pi carrier Sal1p, and are ATP consumers during aerobic growth in glucose. Mol. Microbiol. 2008;69:570–585. doi: 10.1111/J.1365-2958.2008.06300.X. PubMed DOI

Traba J., Satrústegui J., del Arco A. Characterization of SCaMC-3-like/slc25a41, a novel calcium-independent mitochondrial ATP-Mg/Pi carrier. Biochem. J. 2009;418:125–133. doi: 10.1042/BJ20081262. PubMed DOI

Tjaden J., Haferkamp I., Boxma B., Tielens A.G.M., Huynen M., Hackstein J.H.P. A divergent ADP/ATP carrier in the hydrogenosomes of Trichomonas gallinae argues for an independent origin of these organelles. Mol. Microbiol. 2004;51:1439–1446. doi: 10.1111/J.1365-2958.2004.03918.X. PubMed DOI

Chan K.W., Slotboom D.J., Cox S., Embley T.M., Fabre O., van der Giezen M., Harding M., Horner D.S., Kunji E.R.S., León-Avila G., Tovar J. A novel ADP/ATP transporter in the mitosome of the microaerophilic human parasite Entamoeba histolytica. Curr. Biol. 2005;15:737–742. doi: 10.1016/j.cub.2005.02.068. PubMed DOI

Mi-Ichi F., Nozawa A., Yoshida H., Tozawa Y., Nozaki T. Evidence that the Entamoeba histolytica mitochondrial carrier family links mitosomal and cytosolic pathways through exchange of 3’-phosphoadenosine 5’-phosphosulfate and ATP. Eukaryot. Cell. 2015;14:1144–1150. doi: 10.1128/EC.00130-15/ASSET/0138F990-6D11-439C-8111-D71B19D46776/ASSETS/GRAPHIC/ZEK9990944930005.JPEG. PubMed DOI PMC

Hampl V., Hug L., Leigh J.W., Dacks J.B., Lang B.F., Simpson A.G.B., Roger A.J. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups,”. Proc. Natl. Acad. Sci. U. S. A. 2009;106:3859–3864. doi: 10.1073/PNAS.0807880106/SUPPL_FILE/0807880106SI.PDF. PubMed DOI PMC

Zítek J., Füssy Z., Treitli S.C., Peña-Diaz P., Vaitová Z., Zavadska D., Harant K., Hampl V. Reduced mitochondria provide an essential function for the cytosolic methionine cycle. Curr. Biol. 2022;32:5057–5068. doi: 10.1016/J.CUB.2022.10.028. PubMed DOI PMC

Braymer J.J., Freibert S.A., Rakwalska-Bange M., Lill R. Mechanistic concepts of iron-sulfur protein biogenesis in Biology. Biochim. Biophys. Acta Mol. Cell Res. 2021;1868 doi: 10.1016/J.BBAMCR.2020.118863. PubMed DOI

Zubáčová Z., Novák L., Bublíková J., Vacek V., Fousek J., Rídl J., Tachezy J., Doležal P., Vlček Č., Hampl V. The mitochondrion-like organelle of Trimastix pyriformis contains the complete Glycine cleavage system. PLoS One. 2013;8 doi: 10.1371/JOURNAL.PONE.0055417. PubMed DOI PMC

Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., Bridgland A., Meyer C., Kohl S.A.A., Ballard A.J., Cowie A., Romera-Paredes B., Nikolov S., Jain R., Adler J., Back T., Petersen S., Reiman D., Clancy E., Zielinski M., Steinegger M., Pacholska M., Berghammer T., Bodenstein S., Silver D., Vinyals O., Senior A.W., Kavukcuoglu K., Kohli P., Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:7873. doi: 10.1038/s41586-021-03819-2. 596 (2021) 583–589. PubMed DOI PMC

Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., De Beer T.A.P., Rempfer C., Bordoli L., Lepore R., Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296. doi: 10.1093/NAR/GKY427. –W303. PubMed DOI PMC

Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/MOLBEV/MST010. PubMed DOI PMC

Criscuolo A., Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 2010;10:1–21. doi: 10.1186/1471-2148-10-210/FIGURES/9. PubMed DOI PMC

Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/MOLBEV/MSU300. PubMed DOI PMC

King M.S., Kunji E.R.S. Expression and purification of membrane proteins in Saccharomyces cerevisiae. Methods Mol. Biol. 2020;2127:47–61. doi: 10.1007/978-1-0716-0373-4_4/COVER. PubMed DOI

Jaiquel Baron S., King M.S., Kunji E.R.S., Schirris T.J.J. Characterization of drug-induced human mitochondrial ADP/ATP carrier inhibition. Theranostics. 2021;11:5077–5091. doi: 10.7150/THNO.54936. PubMed DOI PMC

Majd H., King M.S., Palmer S.M., Smith A.C., Elbourne L.D.H., Paulsen I.T., Sharples D., Henderson P.J.F., Kunji E.R.S. Screening of candidate substrates and coupling ions of transporters by thermostability shift assays. Elife. 2018;7 doi: 10.7554/ELIFE.38821. PubMed DOI PMC

Alexandrov A.I., Mileni M., Chien E.Y.T., Hanson M.A., Stevens R.C. Microscale fluorescent thermal stability assay for membrane proteins. Structure. 2008;16:351–359. doi: 10.1016/j.str.2008.02.004. PubMed DOI

Crichton P.G., Lee Y., Ruprecht J.J., Cerson E., Thangaratnarajah C., King M.S., Kunji E.R.S. Trends in thermostability provide information on the nature of substrate, inhibitor, and lipid interactions with mitochondrial carriers. J. Biol. Chem. 2015;290:8206–8217. doi: 10.1074/jbc.M114.616607. PubMed DOI PMC

Harborne S.P.D., King M.S., Kunji E.R.S. Thermostability assays: a generic and versatile tool for studying the functional and structural properties of membrane proteins in detergents. Methods Mol. Biol. 2020;2168:105–121. doi: 10.1007/978-1-0716-0724-4_5/COVER. PubMed DOI

Peña-Diaz P., Pelosi L., Ebikeme C., Colasante C., Gao F., Bringaud F., Voncken F. Functional characterization of TbMCP5, a conserved and essential ADP/ATP carrier present in the mitochondrion of the human pathogen trypanosoma brucei. J. Biol. Chem. 2012;287 doi: 10.1074/JBC.M112.404699. PubMed DOI PMC

Monné M., Chan K.W., Slotboom D.-J., Kunji E.R.S. Functional expression of eukaryotic membrane proteins in Lactococcus lactis. Protein Sci. 2005;14:3048. doi: 10.1110/PS.051689905. PubMed DOI PMC

Lorenz A., Lorenz M., Vothknecht U.C., Niopek-Witz S., Neuhaus H.E., Haferkamp I. In vitro analyses of mitochondrial ATP/phosphate carriers from Arabidopsis thaliana revealed unexpected Ca2+-effects. BMC Plant Biol. 2015;15 doi: 10.1186/S12870-015-0616-0. PubMed DOI PMC

Robinson A.J., Kunji E.R.S. Mitochondrial carriers in the cytoplasmic state have a common substrate binding site. Proc. Natl. Acad. Sci. U. S. A. 2006;103:2617–2622. doi: 10.1073/PNAS.0509994103/SUPPL_FILE/09994TABLE3.PDF. PubMed DOI PMC

Mavridou V., King M.S., Tavoulari S., Ruprecht J.J., Palmer S.M., Kunji E.R.S. Substrate binding in the mitochondrial ADP/ATP carrier is a step-wise process guiding the structural changes in the transport cycle. Nat. Commun. 2022;13:3585. doi: 10.1038/s41467-022-31366-5. PubMed DOI PMC

Kunji E.R.S., Robinson A.J. The conserved substrate binding site of mitochondrial carriers. Biochim. Biophys. Acta. 2006;1757:1237–1248. doi: 10.1016/J.BBABIO.2006.03.021. PubMed DOI

Tavoulari S., Schirris T.J.J., Mavridou V., Thangaratnarajah C., King M.S., Jones D.T.D., Ding S., Fearnley I.M., Kunji E.R.S. Key features of inhibitor binding to the human mitochondrial pyruvate carrier hetero-dimer. Mol. Metabol. 2022;60 doi: 10.1016/J.MOLMET.2022.101469. PubMed DOI PMC

Jedelský P.L., Doležal P., Rada P., Pyrih J., Šmíd O., Hrdý I., Šedinová M., Marcinčiková M., Voleman L., Perry A.J., Beltrán N.C., Lithgow T., Tachezy J. The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis. PLoS One. 2011;6 doi: 10.1371/JOURNAL.PONE.0017285. PubMed DOI PMC

Füssy Z., Vinopalová M., Treitli S.C., Pánek T., Smejkalová P., Čepička I., Doležal P., Hampl V. Retortamonads from vertebrate hosts share features of anaerobic metabolism and pre-adaptations to parasitism with diplomonads. Parasitol. Int. 2021;82 doi: 10.1016/J.PARINT.2021.102308. PubMed DOI PMC

Buono M.J., Kolkhorst F.W. Estimating ATP resynthesis during a marathon run: a method to introduce metabolism. Adv. Physiol. Educ. 2001;25:70–71. doi: 10.1152/ADVANCES.2001.25.2.70. DOI

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.22317793

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...