Temperate Zone Plant Natural Products-A Novel Resource for Activity against Tropical Parasitic Diseases

. 2021 Mar 07 ; 14 (3) : . [epub] 20210307

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33800005

Grantová podpora
261876735 Newton Fund
N/A High Value Chemicals from Plants (BBSRC)
N/A Higher Committee for Education Development in Iraq (HCED) award
MR/P011241/1 Medical Research Council - United Kingdom
BSAC-2018-0004 British Society for Antimicrobial Chemotherapy

The use of plant-derived natural products for the treatment of tropical parasitic diseases often has ethnopharmacological origins. As such, plants grown in temperate regions remain largely untested for novel anti-parasitic activities. We describe here a screen of the PhytoQuest Phytopure library, a novel source comprising over 600 purified compounds from temperate zone plants, against in vitro culture systems for Plasmodium falciparum, Leishmania mexicana, Trypanosoma evansi and T. brucei. Initial screen revealed 6, 65, 15 and 18 compounds, respectively, that decreased each parasite's growth by at least 50% at 1-2 µM concentration. These initial hits were validated in concentration-response assays against the parasite and the human HepG2 cell line, identifying hits with EC50 < 1 μM and a selectivity index of >10. Two sesquiterpene glycosides were identified against P. falciparum, four sterols against L. mexicana, and five compounds of various scaffolds against T. brucei and T. evansi. An L. mexicana resistant line was generated for the sterol 700022, which was found to have cross-resistance to the anti-leishmanial drug miltefosine as well as to the other leishmanicidal sterols. This study highlights the potential of a temperate plant secondary metabolites as a novel source of natural products against tropical parasitic diseases.

Zobrazit více v PubMed

WHO Control of Neglected Tropical Diseases. [(accessed on 2 December 2020)]; Available online: https://www.who.int/teams/control-of-neglected-tropical-diseases.

Cheuka P.M., Mayoka G., Mutai P., Chibale K. The role of natural products in drug discovery and development against neglected tropical diseases. Molecules. 2017;22:58. doi: 10.3390/molecules22010058. PubMed DOI PMC

Zinsstag J., Crump L., Schelling E., Hattendorf J., Maidane Y.O., Ali K.O., Muhummed A., Umer A.A., Aliyi F., Nooh F., et al. Climate change and One Health. FEMS Microbiol. Lett. 2018;365:1–9. doi: 10.1093/femsle/fny085. PubMed DOI PMC

Hernando-Amado S., Coque T.M., Baquero F., Martínez J.L. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat. Microbiol. 2019;4:1432–1442. doi: 10.1038/s41564-019-0503-9. PubMed DOI

Booth M. Climate Change and the Neglected Tropical Diseases. Adv. Parasitol. 2018;100:39–126. PubMed PMC

Ganesan A. The impact of natural products upon modern drug discovery. Curr. Opin. Chem. Biol. 2008;12:306–317. doi: 10.1016/j.cbpa.2008.03.016. PubMed DOI

Clark A.M. Natural products as a resource for new drugs. Pharm. Res. 1996;13:1133–1144. doi: 10.1023/A:1016091631721. PubMed DOI

Newman D.J., Cragg G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 2007;70:461–477. doi: 10.1021/np068054v. PubMed DOI

Newman D.J., Cragg G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016;79:629–661. doi: 10.1021/acs.jnatprod.5b01055. PubMed DOI

Dias D.A., Urban S., Roessner U. A historical overview of natural products in drug discovery. Metabolites. 2012;2:303–336. doi: 10.3390/metabo2020303. PubMed DOI PMC

Achan J., Talisuna A.O., Erhart A., Yeka A., Tibenderana J.K., Baliraine F.N., Rosenthal P.J., D’Alessandro U. Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria. Malar. J. 2011;10:144. doi: 10.1186/1475-2875-10-144. PubMed DOI PMC

Smith A.C., Williams R.M. Rabe rest in peace: Confirmation of the rabe-kindler conversion of d-quinotoxine into quinine: Experimental affirmation of the woodward-doering formal total synthesis of quinine. Angew. Chem. Int. Ed. 2008;47:1736–1740. doi: 10.1002/anie.200705421. PubMed DOI PMC

Woodward R.B., Doering W.E. The Total Synthesis of Quinine1. J. Am. Chem. Soc. 1944;66:849. doi: 10.1021/ja01233a516. DOI

PhytoQuest Phytoquest—Unlocking Iminosugars. [(accessed on 2 December 2020)]; Available online: http://www.phytoquest.co.uk/services.php.

World Health Organization Global leishmaniasis surveillance, 2017–2018, and first report on 5 additional indicators. Wkly. Epidemiol. Rec. 2020;95:265–280.

WHO Leishmaniasis. [(accessed on 4 December 2020)]; Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis.

Singh O.P., Singh B., Chakravarty J., Sundar S. Current challenges in treatment options for visceral leishmaniasis in India: A public health perspective. Infect. Dis. Poverty. 2016;5 doi: 10.1186/s40249-016-0112-2. PubMed DOI PMC

Elmahallawy E., Agil A. Treatment of Leishmaniasis: A Review and Assessment of Recent Research. Curr. Pharm. Des. 2015;21:2259–2275. doi: 10.2174/1381612821666141231163053. PubMed DOI

Ponte-Sucre A., Gamarro F., Dujardin J.C., Barrett M.P., López-Vélez R., García-Hernández R., Pountain A.W., Mwenechanya R., Papadopoulou B. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl. Trop. Dis. 2017;11:1–24. doi: 10.1371/journal.pntd.0006052. PubMed DOI PMC

Sunyoto T., Potet J., Boelaert M. Why miltefosine—A life-saving drug for leishmaniasis-is unavailable to people who need it the most. BMJ Glob. Health. 2018;3:1–10. doi: 10.1136/bmjgh-2018-000709. PubMed DOI PMC

WHO | Trypanosomiasis, African. [(accessed on 27 January 2014)]; Available online: http://www.who.int/topics/trypanosomiasis_african/en/

Mesu V.K.B.K., Kalonji W.M., Bardonneau C., Mordt O.V., Blesson S., Simon F., Delhomme S., Bernhard S., Kuziena W., Lubaki J.-P.F., et al. Oral fexinidazole for late-stage African Trypanosoma brucei gambiense trypanosomiasis: A pivotal multicentre, randomised, non-inferiority trial. Lancet. 2018;391:144–154. doi: 10.1016/S0140-6736(17)32758-7. PubMed DOI

Schmid C., Richer M., Bilenge C.M.M., Josenando T., Chappuis F., Menthelot C.R., Nangouma A., Doua F., Asumu P.N., Simarro P.P., et al. Effectiveness of a 10-day melarsoprol schedule for the treatment of late-stage human African Trypanosomiasis: Confirmation from a multinational study (IMPAMEL II) J. Infect. Dis. 2005;191:1922–1931. doi: 10.1086/429929. PubMed DOI

Ralston K.S., Kabututu Z.P., Melehani J.H., Oberholzer M., Hill K.L. The Trypanosoma brucei Flagellum: Moving Parasites in New Directions. Annu. Rev. Microbiol. 2009;63:335–362. doi: 10.1146/annurev.micro.091208.073353. PubMed DOI PMC

Ho H.H., He C.Y., De Graffenried C.L., Murrells L.J., Warren G. Ordered assembly of the duplicating Golgi in Trypanosoma brucei. Proc. Natl. Acad. Sci. USA. 2006;103:7676–7681. doi: 10.1073/pnas.0602595103. PubMed DOI PMC

Dean S., Gould M.K., Dewar C.E., Schnaufer A.C. Single point mutations in ATP synthase compensate for mitochondrial genome loss in trypanosomes. Proc. Natl. Acad. Sci. USA. 2013;110:14741–14746. doi: 10.1073/pnas.1305404110. PubMed DOI PMC

Desquesnes M., Dargantes A., Lai D.-H., Lun Z.-R., Holzmuller P., Jittapalapong S. Trypanosoma evansi and Surra: A Review and Perspectives on Transmission, Epidemiology and Control, Impact, and Zoonotic Aspects. BioMed Res. Int. 2013;2013:321237. doi: 10.1155/2013/321237. PubMed DOI PMC

Schnaufer A., Domingo G.J., Stuart K. Natural and induced dyskinetoplastic trypanosomatids: How to live without mitochondrial DNA. Int. J. Parasitol. 2002;32:1071–1084. doi: 10.1016/S0020-7519(02)00020-6. PubMed DOI

Lai D.-H., Hashimi H., Lun Z.-R., Ayala F.J., Lukes J. Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proc. Natl. Acad. Sci. USA. 2008;105:1999–2004. doi: 10.1073/pnas.0711799105. PubMed DOI PMC

Hooft van Huijsduijnen R., Wells T.N. The antimalarial pipeline. Curr. Opin. Pharmacol. 2018;42:1–6. doi: 10.1016/j.coph.2018.05.006. PubMed DOI

Burrows J.N., Burlot E., Campo B., Cherbuin S., Jeanneret S., Leroy D., Spangenberg T., Waterson D., Wells T.N.C., Willis P. Antimalarial drug discovery—The path towards eradication. Parasitology. 2014;141:128–139. doi: 10.1017/S0031182013000826. PubMed DOI PMC

Fairhurst R.M., Dondorp A.M. Artemisinin-Resistant Plasmodium falciparum Malaria. Emerg. Infect. 10. 2016;4:409–429. doi: 10.1128/9781555819453.ch22. PubMed DOI PMC

Cockram P.E., Smith T.K. Active Natural Product Scaffolds against Trypanosomatid Parasites: A Review. J. Nat. Prod. 2018;81:2138–2154. doi: 10.1021/acs.jnatprod.8b00159. PubMed DOI

Duarte N., Ramalhete C., Lourenço L. Plant Terpenoids as Lead Compounds Against Malaria and Leishmaniasis. Stud. Nat. Prod. Chem. 2019;62:243–306. doi: 10.1016/B978-0-444-64185-4.00007-1. DOI

Smith A.B., Hale K.J., Vaccaro H.A., Rivero R.A. Phyllanthoside-Phyllanthostatin Synthetic Studies. 9. Total Syntheses of (−)-Phyllanthostatin 1, (+)-Phyllanthostatin 2, and (+)-Phyllanthostatin 3. J. Am. Chem. Soc. 1991;113:2112–2122. doi: 10.1021/ja00006a031. DOI

Pettit G.R., Schaufelberger D.E., Nieman R.A., Dufresne C., Saenz-Renauld J.A. Antineoplastic agents, 177.1 isolation and structure of phyllanthostatin 6. J. Nat. Prod. 1990;53:1406–1413. doi: 10.1021/np50072a002. PubMed DOI

González M.A. Aromatic abietane diterpenoids: Their biological activity and synthesis. Nat. Prod. Rep. 2015;32:684–704. doi: 10.1039/C4NP00110A. PubMed DOI

Tan N., Kaloga M., Radtke O.A., Kiderlen A.F., Öksüz S., Ulubelen A., Kolodziej H. Abietane diterpenoids and triterpenoic acids from Salvia cilicica and their antileishmanial activities. Phytochemistry. 2002;61:881–884. doi: 10.1016/S0031-9422(02)00361-8. PubMed DOI

Farimani M.M., Khodaei B., Moradi H., Aliabadi A., Ebrahimi S.N., De Mieri M., Kaiser M., Hamburger M. Phytochemical Study of Salvia leriifolia Roots: Rearranged Abietane Diterpenoids with Antiprotozoal Activity. J. Nat. Prod. 2018;81:1384–1390. doi: 10.1021/acs.jnatprod.7b01019. PubMed DOI

Uddin G., Rauf A., Arfan M., Waliullah, Khan I., Ali M., Taimur M., Ur-Rehman I. Samiullah Pistagremic acid a new leishmanicidal triterpene isolated from Pistacia integerrima Stewart. J. Enzyme Inhib. Med. Chem. 2012;27:646–648. doi: 10.3109/14756366.2011.604853. PubMed DOI

Handa M., Murata T., Kobayashi K., Selenge E., Miyase T., Batkhuu J., Yoshizaki F. Lipase inhibitory and LDL anti-oxidative triterpenes from Abies sibirica. Phytochemistry. 2013;86:168–175. doi: 10.1016/j.phytochem.2012.11.017. PubMed DOI

Kim C.S., Oh J., Subedi L., Kim S.Y., Choi S.U., Lee K.R. Structural Characterization of Terpenoids from Abies holophylla Using Computational and Statistical Methods and Their Biological Activities. J. Nat. Prod. 2018;81:1795–1802. doi: 10.1021/acs.jnatprod.8b00245. PubMed DOI

Whiteland H.L., Chakroborty A., Forde-Thomas J.E., Crusco A., Cookson A., Hollinshead J., Fenn C.A., Bartholomew B., Holdsworth P.A., Fisher M., et al. An Abeis procera-derived tetracyclic triterpene containing a steroid-like nucleus core and a lactone side chain attenuates in vitro survival of both Fasciola hepatica and Schistosoma mansoni. Int. J. Parasitol. Drugs Drug Resist. 2018;8:465–474. doi: 10.1016/j.ijpddr.2018.10.009. PubMed DOI PMC

He Y., Fan Q., Cai T., Huang W., Xie X., Wen Y., Shi Z. Molecular mechanisms of the action of Arctigenin in cancer. Biomed. Pharmacother. 2018;108:403–407. doi: 10.1016/j.biopha.2018.08.158. PubMed DOI

Valsta L.M., Kilkkinen A., Mazur W., Nurmi T., Lampi A.-M., Ovaskainen M.-L., Korhonen T., Adlercreutz H., Pietinen P. Phyto-oestrogen database of foods and average intake in Finland. Br. J. Nutr. 2003;89:S31–S38. doi: 10.1079/BJN2002794. PubMed DOI

Bess E.N., Bisanz J.E., Yarza F., Bustion A., Rich B.E., Li X., Kitamura S., Waligurski E., Ang Q.Y., Alba D.L., et al. Genetic basis for the cooperative bioactivation of plant lignans by Eggerthella lenta and other human gut bacteria. Nat. Microbiol. 2020;5:56–66. doi: 10.1038/s41564-019-0596-1. PubMed DOI PMC

Lu Z., Zhou H., Zhang S., Dai W., Zhang Y., Hong L., Chen F., Cao J. Activation of reactive oxygen species-mediated mitogen-activated protein kinases pathway regulates both extrinsic and intrinsic apoptosis induced by arctigenin in Hep G2. J. Pharm. Pharmacol. 2020;72:29–43. doi: 10.1111/jphp.13180. PubMed DOI

Mahmoud A.B., Danton O., Kaiser M., Han S., Moreno A., Abd Algaffar S., Khalid S., Oh W.K., Hamburger M., Mäser P. Lignans, Amides, and Saponins from Haplophyllum tuberculatum and Their Antiprotozoal Activity. Molecules. 2020;25:2825. doi: 10.3390/molecules25122825. PubMed DOI PMC

Karioti A., Tooulakou G., Bilia A.R., Psaras G.K., Karabourniotis G., Skaltsa H. Erinea formation on Quercus ilex leaves: Anatomical, physiological and chemical responses of leaf trichomes against mite attack. Phytochemistry. 2011;72:230–237. doi: 10.1016/j.phytochem.2010.11.005. PubMed DOI

Kim N., Park S.J., Nhiem N.X., Song J.H., Ko H.J., Kim S.H. Cycloartane-type triterpenoid derivatives and a flavonoid glycoside from the burs of Castanea crenata. Phytochemistry. 2019;158:135–141. doi: 10.1016/j.phytochem.2018.11.001. PubMed DOI

Cai S., Risinger A.L., Nair S., Peng J., Anderson T.J.C., Du L., Powell D.R., Mooberry S.L., Cichewicz R.H. Identification of Compounds with Efficacy against Malaria Parasites from Common North American Plants. J. Nat. Prod. 2016;79:490–498. doi: 10.1021/acs.jnatprod.5b00874. PubMed DOI PMC

Ullah I., Sharma R., Biagini G.A., Horrocks P. A validated bioluminescence-based assay for the rapid determination of the initial rate of kill for discovery antimalarials. J. Antimicrob. Chemother. 2017;72:717–726. doi: 10.1093/jac/dkw449. PubMed DOI

Ullah I., Sharma R., Mete A., Biagini G.A., Wetzel D.M., Horrocks P.D. The relative rate of kill of the MMV Malaria Box compounds provides links to the mode of antimalarial action and highlights scaffolds of medicinal chemistry interest. J. Antimicrob. Chemother. 2020;75:362–370. doi: 10.1093/jac/dkz443. PubMed DOI PMC

Seifert K., Matu S., Pérez-Victoria F.J., Castanys S., Gamarro F., Croft S.L. Characterisation of Leishmania donovani promastigotes resistant to hexadecylphosphocholine (miltefosine) Int. J. Antimicrob. Agents. 2003;22:380–387. doi: 10.1016/S0924-8579(03)00125-0. PubMed DOI

Beneke T., Demay F., Hookway E., Ashman N., Jeffery H., Smith J., Valli J., Becvar T., Myskova J., Lestinova T., et al. Genetic dissection of a Leishmania flagellar proteome demonstrates requirement for directional motility in sand fly infections. PLoS Pathog. 2019;15:e1007828. doi: 10.1371/journal.ppat.1007828. PubMed DOI PMC

Zauli R.C., Yokoyama-Yasunaka J.K.U., Miguel D.C., Moura A.S., Pereira L.I.A., Da Silva I.A., Lemes L.G.N., Dorta M.L., De Oliveira M.A.P., Pitaluga A.N., et al. A dysflagellar mutant of Leishmania (Viannia) braziliensis isolated from a cutaneous leishmaniasis patient. Parasites Vectors. 2012;5:1–12. doi: 10.1186/1756-3305-5-11. PubMed DOI PMC

Berry S.L., Hameed H., Thomason A., Maciej-Hulme M.L., Saif Abou-Akkada S., Horrocks P., Price H.P. Development of NanoLuc-PEST expressing Leishmania mexicana as a new drug discovery tool for axenic- and intramacrophage-based assays. PLoS Negl. Trop. Dis. 2018;12:1–20. doi: 10.1371/journal.pntd.0006639. PubMed DOI PMC

Bates P.A., Robertson C.D., Coombs G.H., Tetley L. Axenic cultivation and characterization of Leishmania mexicana amastigote-like forms. Parasitology. 1992;105:193–202. doi: 10.1017/S0031182000074102. PubMed DOI

Debrabant A., Joshi M.B., Pimenta P.F.P., Dwyer D.M. Generation of Leishmania donovani axenic amastigotes: Their growth and biological characteristics. Int. J. Parasitol. 2004;34:205–217. doi: 10.1016/j.ijpara.2003.10.011. PubMed DOI

Wirtz E., Leal S., Ochatt C., Cross G. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol. Biochem. Parasitol. 1999;99:89–101. doi: 10.1016/S0166-6851(99)00002-X. PubMed DOI

Hirumi H., Hirumi K. Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. J. Parasitol. 1989;75:985–989. doi: 10.2307/3282883. PubMed DOI

Wong E.H., Hasenkamp S., Horrocks P. Analysis of the molecular mechanisms governing the stage-specific expression of a prototypical housekeeping gene during intraerythrocytic development of P. falciparum. J. Mol. Biol. 2011;408:205–221. doi: 10.1016/j.jmb.2011.02.043. PubMed DOI PMC

Trager W., Jensen J. Human malaria parasites in continuous culture. Science. 1976;193:673–675. doi: 10.1126/science.781840. PubMed DOI

Hasenkamp S., Sidaway A., Devine O., Roye R., Horrocks P. Evaluation of bioluminescence-based assays of anti-malarial drug activity. Malar. J. 2013;12:1–10. doi: 10.1186/1475-2875-12-58. PubMed DOI PMC

Lambros C., Vanderberg J.P. Synchronization of Plasmodium falciparum Erythrocytic Stages in Culture. J. Parasitol. 1979;65:418. doi: 10.2307/3280287. PubMed DOI

Horrocks P., Pickard M.R., Parekh H.H., Patel S.P., Pathak R.B. Synthesis and biological evaluation of 3-(4-chlorophenyl)-4-substituted pyrazole derivatives. Org. Biomol. Chem. 2013;11:4891–4898. doi: 10.1039/c3ob27290g. PubMed DOI

Aldulaimi O., Uche F.I., Hameed H., Mbye H., Ullah I., Drijfhout F., Claridge T.D.W., Horrocks P., Li W.W. A characterization of the antimalarial activity of the bark of Cylicodiscus gabunensis Harms. J. Ethnopharmacol. 2017;198:221–225. doi: 10.1016/j.jep.2017.01.014. PubMed DOI

Tsuchiya S., Yamabe M., Yamaguchi Y., Kobayashi Y., Konno T., Tada K. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1) Int. J. Cancer. 1980;26:171–176. doi: 10.1002/ijc.2910260208. PubMed DOI

Jain S.K., Sahu R., Walker L.A., Tekwani B.L. A parasite rescue and transformation assay for antileishmanial screening against intracellular Leishmania donovani amastigotes in THP1 human acute monocytic leukemia cell line. J. Vis. Exp. 2012:1–14. doi: 10.3791/4054. PubMed DOI PMC

Mikus J., Steverding D. A simple colorimetric method to screen drug cytotoxicity against Leishmania using the dye Alamar Blue®. Parasitol. Int. 2000;48:265–269. doi: 10.1016/S1383-5769(99)00020-3. PubMed DOI

Smilkstein M., Sriwilaijaroen N., Kelly J.X., Wilairat P., Riscoe M. Simple and Inexpensive Fluorescence-Based Technique for High-Throughput Antimalarial Drug Screening. Antimicrob. Agents Chemother. 2004;48:1803–1806. doi: 10.1128/AAC.48.5.1803-1806.2004. PubMed DOI PMC

Berry S.L., Walker K., Hoskins C., Telling N.D., Price H.P. Nanoparticle-mediated magnetic hyperthermia is an effective method for killing the human-infective protozoan parasite Leishmania mexicana in vitro. Sci. Rep. 2019;9:1059. doi: 10.1038/s41598-018-37670-9. PubMed DOI PMC

R Core Team . R: A Language and Environment for Statistical Computing. R Development Core Team; Vienna, Australia: 2020.

Revelle W. Psych: Procedures for Personality and Psychological Research. Northwestern University; Evanston, IL, USA: 2019. [(accessed on 7 March 2021)]. R Package Version 2.0.12. Available online: https://CRAN.R-project.org/package=psych.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...