Biochemical and genotyping analyses of camels (Camelus dromedaries) trypanosomiasis in North Africa
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37137920
PubMed Central
PMC10156784
DOI
10.1038/s41598-023-34086-y
PII: 10.1038/s41598-023-34086-y
Knihovny.cz E-zdroje
- MeSH
- antioxidancia MeSH
- fylogeneze MeSH
- genotyp MeSH
- superoxiddismutasa genetika MeSH
- Trypanosoma * genetika MeSH
- trypanozomiáza * epidemiologie veterinární MeSH
- velbloudi MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- severní Afrika MeSH
- Názvy látek
- antioxidancia MeSH
- superoxiddismutasa MeSH
Camels are considered an important food source in North Africa. Trypanosomiasis in camels is a life-threatening disease that causes severe economic losses in milk and meat production. Therefore, the objective of this study was to determine the trypanosome genotypes in the North African region. Trypanosome infection rates were determined by microscopic examination of blood smears and polymerase chain reaction (PCR). In addition, total antioxidant capacity (TAC), lipid peroxides (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were determined in erythrocyte lysate. Furthermore, 18S amplicon sequencing was used to barcode and characterizes the genetic diversity of trypanosome genotypes in camel blood. In addition to Trypanosoma, Babesia and Thelieria were also detected in the blood samples. PCR showed that the trypanosome infection rate was higher in Algerian samples (25.7%) than in Egyptian samples (7.2%). Parameters such as MDA, GSH, SOD and CAT had significantly increased in camels infected with trypanosomes compared to uninfected control animals, while TAC level was not significantly changed. The results of relative amplicon abundance showed that the range of trypanosome infection was higher in Egypt than in Algeria. Moreover, phylogenetic analysis showed that the Trypanosoma sequences of Egyptian and Algerian camels are related to Trypanosoma evansi. Unexpectedly, diversity within T. evansi was higher in Egyptian camels than in Algerian camels. We present here the first molecular report providing a picture of trypanosomiasis in camels, covering wide geographical areas in Egypt and Algeria.
Biology Centre Institute of Parasitology Czech Academy of Sciences České Budějovice Czech Republic
Biotechnology School Nile University Sheikh Zayed Giza Egypt
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Genetic Department Faculty of Agriculture Ain Shams University Cairo Egypt
SequAna Core Facility Department of Biology University of Konstanz 78464 Konstanz Germany
Zobrazit více v PubMed
Igbokwe IO. Evolving anti-disease strategies from biochemical pathogenesis of African trypanosomiasis. Adv. Cytol. Pathol. 2018;3(2):33–39.
Njiru ZK, Constantine CC, Gitonga PK, Thompson RC, Reid SA. Genetic variability of Trypanosoma evansi isolates detected by inter-simple sequence repeat anchored-PCR and microsatellite. Vet. Parasitol. 2007;147(1–2):51–60. doi: 10.1016/j.vetpar.2007.03.010. PubMed DOI
Njiru ZK, Constantine CC, Guya S, Crowther J, Kiragu JM, Thompson RC, Dávila AM. The use of ITS1 rDNA PCR in detecting pathogenic African trypanosomes. Parasitol. Res. 2005;95(3):186–192. doi: 10.1007/s00436-004-1267-5. PubMed DOI
Lukeš J, Kachale A, Votýpka J, Butenko A, Field MC. African trypanosome strategies for conquering new hosts and territories: the end of monophyly? Trends Parasitol. 2022;38(9):724–736. doi: 10.1016/j.pt.2022.05.011. PubMed DOI
Hoare, C. A. The trypanosomes of mammals. In: A Zoological Monograph 1-749 (Blackwell Scientific Publications, Oxford, UK, 1972).
Saleh MA, Al-Salahy MB, Sanousi SA. Oxidative stress in blood of camels (Camelus dromedaries) naturally infected with Trypanosoma evansi. Vet. Parasitol. 2009;162(3–4):192–199. doi: 10.1016/j.vetpar.2009.03.035. PubMed DOI
Carr IM, Robinson JI, Dimitriou R, Markham AF, Morgan AW, Bonthron DT. Inferring relative proportions of DNA variants from sequencing electropherograms. Bioinform. 2009;25(24):3244–3250. doi: 10.1093/bioinformatics/btp583. PubMed DOI
Fantin YS, Neverov AD, Favorov AV, Alvarez-Figueroa MV, Braslavskaya SI, Gordukova MA, Karandashova IV, Kuleshov KV, Myznikova AI, Polishchuk MS, Reshetov DA, Voiciehovskaya YA, Mironov AA, Chulanov VP. Base-calling algorithm with vocabulary (BCV) method for analyzing population sequencing chromatograms. PLoS ONE. 2013;8(1):e54835. doi: 10.1371/journal.pone.0054835. PubMed DOI PMC
Paparini A, Jackson B, Ward S, Young S, Ryan UM. Multiple Cryptosporidium genotypes detected in wild black rats (Rattus rattus) from northern Australia. Exp. Parasitol. 2012;131(4):404–412. doi: 10.1016/j.exppara.2012.05.009. PubMed DOI
Barbosa, A. D., Gofton, A. W., Paparini, A., Codello, A., Greay, T., Gillett, A., Warren, K., Irwin, P. & Ryan, U. Increased genetic diversity and prevalence of co-infection with Trypanosoma spp. in koalas (Phascolarctos cinereus) and their ticks identified using next-generation sequencing (NGS). PloS one12(7), e0181279 (2017). PubMed PMC
Van Dijk EL, Auger H, Jaszczyszyn Y, Thermes CT. Ten years of next-generation sequencing technology. Trends Genet. 2014;30(9):418–426. doi: 10.1016/j.tig.2014.07.001. PubMed DOI
Kuczynski J, Costello EK, Nemergut DR, Zaneveld J, Lauber CL, Knights D, Koren O, Fierer N, Kelley ST, Ley RE, Gordon JI, Knight R. Direct sequencing of the human microbiome readily reveals community differences. Genome Biol. 2010;11(5):210. doi: 10.1186/gb-2010-11-5-210. PubMed DOI PMC
Mathison BA, Pritt BS. Update on malaria diagnostics and test utilization. J. Clin. Microbiol. 2017;55(7):2009–2017. doi: 10.1128/JCM.02562-16. PubMed DOI PMC
Ellman GL. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. PubMed DOI
Koracevic D, Koracevic G, Djordjevic V, Andrejevic S, Cosic V. Method for the measurement of antioxidant activity in human fluids. J. Clin. Pathol. 2001;54(5):356–361. doi: 10.1136/jcp.54.5.356. PubMed DOI PMC
Drabkin DL, Austin JH. Spectrophotometric studies: I. Spectrophotometric constants for common hemoglobin derivatives in human, dog, and rabbit blood. J. Biol. Chem. 1932;98(2):719–733. doi: 10.1016/S0021-9258(18)76122-X. DOI
Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979;95(2):351–358. doi: 10.1016/0003-2697(79)90738-3. PubMed DOI
Nishikimi M, Rao NA, Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun. 1972;46(2):849–854. doi: 10.1016/S0006-291X(72)80218-3. PubMed DOI
Aebi, H. Catalase. In: Bergmeyer, H. V., Eds., Methods in Enzymatic Analysis, 673–686 (Academic Press Inc., New York, 1974).
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30(4):772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. ProtTest-HPC: fast selection of best-fit models of protein evolution. In Euro-Par 2010 Parallel Processing Workshops. Euro-Par 2010. Lecture Notes in Computer Science, vol. 6586. Springer, Berlin. 10.1007/978-3-642-21878-1_22 (2011).
Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A, Wren J. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35(21):4453–4455. doi: 10.1093/bioinformatics/btz305. PubMed DOI PMC
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, Lanfear R, Teeling E. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020;37(5):1530–1534. doi: 10.1093/molbev/msaa015. PubMed DOI PMC
Snedecor GW, Cochran WG. Statistical Methods. Iowa State Universirty Press; 1994.
Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv, p. 081257 (2016).
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(D1):D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC
Abou El-Naga TRA, Barghash SM. Blood parasites in camels (Camelus dromedarius) in Northern West Coast of Egypt. J. Bacteriol. Parasitol. 2016;7(1):258. doi: 10.4172/2155-9597.1000258. DOI
Barghash SM, Darwish AM, Abou-El-Naga TR. Molecular characterization and phylogenetic analysis of Trypanosoma evansi from local and imported camels in Egypt. J. Phylogenetics Evol. Biol. 2016;4:169. doi: 10.4172/2329-9002.1000169. DOI
Claes F, Radwansk M, Urakawa T, Majiwa PA, Goddeeris BM, Büscher P. Variable surface glycoprotein RoTat 1.2 PCR as a specific diagnostic tool for the detection of Trypanosoma evansi infections. Kinetoplastid Biol. Dis. 2004;3(1):1–6. doi: 10.1186/1475-9292-3-3. PubMed DOI PMC
Barghash SM, Abou El-Naga TR, El-Sherbeny EA, Darwish AM. Prevalence of 350 Trypanosoma evansi in Maghrabi camels (Camelus dromedarius) in Northern-West Coast, Egypt using molecular and parasitological methods. Acta Parasitol. Globalis. 2014;5:125–132.
Ranjithkumar M, Kamili NM, Saxena A, Dan A, Dey S, Raut SS. Disturbance of oxidant/antioxidant equilibrium in horses naturally infected with Trypanosoma evansi. Vet. Parasitol. 2011;180(3–4):349–353. doi: 10.1016/j.vetpar.2011.03.029. PubMed DOI
Parashar R, Singla LD, Gupta M, Sharma SK. Evaluation and correlation of oxidative stress and haemato-biochemical observations in horses with natural patent and latent trypanosomosis in Punjab state of India. Acta Parasitol. 2018;63(4):733–743. doi: 10.1515/ap-2018-0087. PubMed DOI
Pandey V, Nigam R, Jaiswal AK, Sudan V, Singh RK, Yadav PK. Haemato-biochemical and oxidative status of buffaloes naturally infected with Trypanosoma evansi. Vet. Parasitol. 2015;212(3–4):118–122. doi: 10.1016/j.vetpar.2015.07.025. PubMed DOI
Wolkmer P, da Silva AS, Traesel CK, Paim FC, Cargnelutti JF, Pagnoncelli M, Picada ME, Monteiro SG, dos Anjos Lopes ST. Lipid peroxidation associated with anemia in rats experimentally infected with Trypanosoma evansi. Vet. Parasitol. 2009;165(1–2):41–46. doi: 10.1016/j.vetpar.2009.06.032. PubMed DOI
Cimen MYB. Free radicals metabolism in human erythrocytes. Clin. Chim. Acta. 2008;390(1–2):1–11. doi: 10.1016/j.cca.2007.12.025. PubMed DOI
Gutteridge JMC. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin. Chem. 1995;41(12):1819–1828. doi: 10.1093/clinchem/41.12.1819. PubMed DOI
Yusuf AB, Umar IA, Nok AJ. Effects of methanol extract of Vernonia amygdalina leaf on survival and some biochemical parameters in acute Trypanosoma brucei brucei infection. Afr. J. Biochem. Res. 2012;6(12):150–158.
Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genom. 2012;13(1):341. doi: 10.1186/1471-2164-13-341. PubMed DOI PMC
Thompson CK, Thompson RCA. Trypanosomes of Australian mammals: knowledge gaps regarding transmission and biosecurity. Trends Parasitol. 2015;31(11):553–562. doi: 10.1016/j.pt.2015.06.011. PubMed DOI
Cooper C, Clode PL, Peacock C, Thompson RAC. Host-parasite relationships and life histories of trypanosomes in Australia. Adv. Parasitol. 2016;97:47–109. doi: 10.1016/bs.apar.2016.06.001. PubMed DOI
Jenni L, Marti S, Schweizer J, Betschart B, Le Page RW, Wells JM, Tait A, Paindavoine P, Pays E, Steinert M. Hybrid formation between African trypanosomes during cyclical transmission. Nature. 1986;322(6075):173–175. doi: 10.1038/322173a0. PubMed DOI
Gaunt MW, Yeo M, Frame IA, Stothard JR, Carrasco HJ, Taylor MC, Solis Mena S, Veazey P, Miles GAJ, Acosta N, Rojas de Arias A, Miles MA. Mechanism of genetic exchange in American trypanosomes. Nature. 2003;421(6926):936–939. doi: 10.1038/nature01438. PubMed DOI
Hing S, Northover AS, Narayan EJ, Wayne AF, Jones KL, Keatley S, Thompson RCA, Godfrey SS. Evaluating stress physiology and parasite infection parameters in the translocation of critically endangered woylies (Bettongia penicillata) EcoHealth. 2017;14:128–138. doi: 10.1007/s10393-017-1214-4. PubMed DOI
Tomlinson S, Raper J. The lysis of Trypanosoma brucei by human serum. Nat. Biotechnol. 1996;14(6):717–721. doi: 10.1038/nbt0696-717. PubMed DOI
Welburn SC, Fèvre EM, Coleman PG, Odiit M, Maudlin I. Sleeping sickness: a tale of two diseases. Trends Parasitol. 2001;17(1):19–24. doi: 10.1016/S1471-4922(00)01839-0. PubMed DOI
Carnes J, Anupama A, Balmer O, Jackson A, Lewis M, Brown R, Cestari I, Desquesnes M, Gendrin C, Hertz-Fowler C, Imamura H. Genome and phylogenetic analyses of Trypanosoma evansi reveal extensive similarity to T. brucei and multiple independent origins for dyskinetoplasty. PLoS Negl. Trop. Dis. 2015;9(1):e3404. doi: 10.1371/journal.pntd.0003404. PubMed DOI PMC
Lai DH, Hashimi H, Lun ZR, Ayala FJ, Lukeš J. Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proc. Natl. Acad. Sci. USA. 2008;105(6):1999–2004. doi: 10.1073/pnas.0711799105. PubMed DOI PMC
Gibson W, Backhouse T, Griffiths A. The human serum resistance associated gene is ubiquitous and conserved in Trypanosoma brucei rhodesiense throughout East Africa. Infect. Genet. Evol. 2002;1(3):207–214. doi: 10.1016/S1567-1348(02)00028-X. PubMed DOI
Balmer O, Beadell JS, Gibson W, Caccone A. Phylogeography and taxonomy of Trypanosoma brucei. PLoS Negl. Trop. Dis. 2011;5(2):e961. doi: 10.1371/journal.pntd.0000961. PubMed DOI PMC
Gibson W, Nemetschke L, Ndungu J. Conserved sequence of the TgsGP gene in Group 1 Trypanosoma brucei gambiense. Infect. Genet. Evol. 2010;10(4):453–458. doi: 10.1016/j.meegid.2010.03.005. PubMed DOI
Verloo D, Magnus E, Büscher P. General expression of RoTat 1.2 variable antigen type in Trypanosoma evansi isolates from different origin. Vet. Parasitol. 2001;97(3):185–191. doi: 10.1016/S0304-4017(01)00412-5. PubMed DOI
Njiru ZK, Ouma JO, Enyaru JC, Dargantes A. Loop-mediated isothermal amplification (LAMP) test for detection of Trypanosoma evansi strain B. Exp. Parasitol. 2010;125(3):196–201. doi: 10.1016/j.exppara.2010.01.017. PubMed DOI
Cuypers B, Van den Broeck F, Van Reet N, Meehan CJ, Cauchard J, Wilkes JM, Claes F, Goddeeris B, Birhanu H, Dujardin JC, Laukens K. Genome-wide SNP analysis reveals distinct origins of Trypanosoma evansi and Trypanosoma equiperdum. Genome Biol. Evol. 2017;9(8):1990–1997. doi: 10.1093/gbe/evx102. PubMed DOI PMC