Heme-deficient metabolism and impaired cellular differentiation as an evolutionary trade-off for human infectivity in Trypanosoma brucei gambiense
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36400774
PubMed Central
PMC9674590
DOI
10.1038/s41467-022-34501-4
PII: 10.1038/s41467-022-34501-4
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce MeSH
- buněčná diferenciace genetika MeSH
- hem metabolismus MeSH
- lidé MeSH
- lipoproteiny HDL * metabolismus MeSH
- Trypanosoma brucei gambiense * genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hem MeSH
- lipoproteiny HDL * MeSH
Resistance to African trypanosomes in humans relies in part on the high affinity targeting of a trypanosome lytic factor 1 (TLF1) to a trypanosome haptoglobin-hemoglobin receptor (HpHbR). While TLF1 avoidance by the inactivation of HpHbR contributes to Trypanosoma brucei gambiense human infectivity, the evolutionary trade-off of this adaptation is unknown, as the physiological function of the receptor remains to be elucidated. Here we show that uptake of hemoglobin via HpHbR constitutes the sole heme import pathway in the trypanosome bloodstream stage. T. b. gambiense strains carrying the inactivating mutation in HpHbR, as well as genetically engineered T. b. brucei HpHbR knock-out lines show only trace levels of intracellular heme and lack hemoprotein-based enzymatic activities, thereby providing an uncommon example of aerobic parasitic proliferation in the absence of heme. We further show that HpHbR facilitates the developmental progression from proliferating long slender forms to cell cycle-arrested stumpy forms in T. b. brucei. Accordingly, T. b. gambiense was found to be poorly competent for slender-to-stumpy differentiation unless a functional HpHbR receptor derived from T. b. brucei was genetically restored. Altogether, we identify heme-deficient metabolism and disrupted cellular differentiation as two distinct HpHbR-dependent evolutionary trade-offs for T. b. gambiense human infectivity.
Cancer Center Amsterdam Amsterdam UMC VU University Medical Center Amsterdam The Netherlands
Escola Paulista de Medicina Universidade Federal de São Paulo São Paulo Brazil
Faculty of Science University of Ostrava Ostrava Czech Republic
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Microbiology Czech Academy of Sciences Třeboň Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Trypanosoma Unit Institute of Tropical Medicine Antwerp Belgium
Walloon Excellence in Life Sciences and Biotechnology Antwerp Belgium
Zobrazit více v PubMed
Franco JR, Simarro PP, Diarra A, Jannin JG. Epidemiology of human African trypanosomiasis. Clin. Epidemiol. 2014;6:257–275. PubMed PMC
Hajduk SL, et al. Lysis of Trypanosoma brucei by a toxic subspecies of human high-density lipoprotein. J. Biol. Chem. 1989;264:5210–5217. PubMed
Raper J, Portela MP, Lugli E, Frevert U, Tomlinson S. Trypanosome lytic factors: Novel mediators of human innate immunity. Curr. Opin. Microbiol. 2001;4:402–408. PubMed
Smith AB, Esko JD, Hajduk SL. Killing of trypanosomes by the human haptoglobin-related protein. Science. 1995;268:284–286. PubMed
Vanhamme L, et al. Apolipoprotein L-I is the trypanosome lytic factor of human serum. Nature. 2003;422:83–87. PubMed
Raper J, Fung R, Ghiso J, Nussenzweig V, Tomlinson S. Characterization of a novel trypanosome lytic factor from human serum. Infect. Immun. 1999;67:1910–1916. PubMed PMC
Verdi J, et al. Inducible germline IgMs bridge Trypanosome Lytic Factor assembly and parasite recognition. Cell Host Microbe. 2020;28:79–88.e4. PubMed
Vanhollebeke B, et al. A haptoglobin-hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans. Science. 2008;320:677–681. PubMed
Stødkilde K, Torvund-Jensen M, Moestrup SK, Andersen CB. Structural basis for trypanosomal haem acquisition and susceptibility to the host innate immune system. Nat. Commun. 2014;5:5487. PubMed
Macleod O, et al. A receptor for the complement regulator factor H increases transmission of trypanosomes to tsetse flies. Nat. Commun. 2020;11:1326. PubMed PMC
Schaer DJ, Buehler PW, Alayash AI, Belcher JD, Vercellotti GM. Hemolysis and free hemoglobin revisited: Exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood. 2013;121:1276–1284. PubMed PMC
Kořený L, Lukeš J, Oborník M. Evolution of the haem synthetic pathway in kinetoplastid flagellates: An essential pathway that is not essential after all? Int. J. Parasitol. 2010;40:149–156. PubMed
Horáková E, et al. The Trypanosoma brucei TbHrg protein is a heme transporter involved in the regulation of stage-specific morphological transitions. J. Biol. Chem. 2017;292:6998–7010. PubMed PMC
Cabello-Donayre M, et al. Trypanosomatid parasites rescue heme from endocytosed hemoglobin through lysosomal HRG transporters. Mol. Microbiol. 2016;101:895–908. PubMed
DeJesus E, Kieft R, Albright B, Stephens NA, Hajduk SL. Single amino acid substitution in the group 1 Trypanosoma brucei gambiense haptoglobin-hemoglobin receptor abolishes TLF-1 binding. PLoS Pathog. 2013;9:e1003317. PubMed PMC
Symula RE, et al. Trypanosoma brucei gambiense group 1 is distinguished by a unique amino acid substitution in the HpHb receptor implicated in human serum resistance. PLoS Negl. Trop. Dis. 2012;6:e1728. PubMed PMC
Higgins MK, et al. Structure of the trypanosome haptoglobin hemoglobin receptor and implications for nutrient uptake and innate immunity. Proc. Natl Acad. Sci. USA. 2013;110:1905–1910. PubMed PMC
Uzureau P, et al. Mechanism of Trypanosoma brucei gambiense resistance to human serum. Nature. 2013;501:430–434. PubMed
Kieft R, et al. Mechanism of Trypanosoma brucei gambiense (group 1) resistance to human trypanosome lytic factor. Proc. Natl Acad. Sci. USA. 2010;107:16137–16141. PubMed PMC
Higgins MK, Lane-Serff H, MacGregor P, Carrington MA. Receptor’s tale: An eon in the life of a trypanosome receptor. PLoS Pathog. 2017;26:13:e1006055. PubMed PMC
Welburn SC, Molyneux DH, Maudlin I. Beyond tsetse - implications for research and control of human African trypanosomiasis epidemics. Trends Parasitol. 2016;32:230–241. PubMed
Kraeva N, et al. Catalase in Leishmaniinae: With me or against me? Infect. Genet. Evol. 2017;50:121–127. PubMed
Zhou W, Cross GA, Nes WD. Cholesterol import fails to prevent catalyst-based inhibition of ergosterol synthesis and cell proliferation of Trypanosoma brucei. J. Lipid Res. 2007;48:665–673. PubMed
Nes CR, et al. Novel sterol metabolic network of Trypanosoma brucei procyclic and bloodstream forms. Biochem. J. 2012;443:267–277. PubMed PMC
Kessler RL, Soares MJ, Probst CM, Krieger MA. Trypanosoma cruzi response to sterol biosynthesis inhibitors: Morphophysiological alterations leading to cell death. PLoS One. 2013;8:e55497. PubMed PMC
McCall LI, et al. Targeting ergosterol biosynthesis in Leishmania donovani: Essentiality of sterol 14alpha-demethylase. PLoS Negl. Trop. Dis. 2015;9:e0003588. PubMed PMC
Dauchy FA, et al. Trypanosoma brucei CYP51: Essentiality and targeting therapy in an experimental model. PLoS Negl. Trop. Dis. 2016;10:e0005125. PubMed PMC
Zhang J, et al. The fungal CYP51s: Their functions, structures, related drug resistance, and inhibitors. Front. Microbiol. 2019;10:691. PubMed PMC
Lepesheva GI, et al. Sterol 14alpha-demethylase as a potential target for antitrypanosomal therapy: Enzyme inhibition and parasite cell growth. Chem. Biol. 2007;14:1283–1293. PubMed PMC
Lecordier L, et al. Adaptation of Trypanosoma rhodesiense to hypohaptoglobinaemic serum requires transcription of the APOL1 resistance gene in a RNA polymerase I locus. Mol. Microbiol. 2015;97:397–407. PubMed
Koda Y, Soejima M, Yoshioka N, Kimura H. The haptoglobin-gene deletion responsible for anhaptoglobinemia. Am. J. Hum. Genet. 1998;62:245–252. PubMed PMC
Vanhollebeke B, et al. Distinct roles of haptoglobin-related protein and apolipoprotein L-I in trypanolysis by human serum. Proc. Natl Acad. Sci. USA. 2007;104:4118–4123. PubMed PMC
Clayton C. Regulation of gene expression in trypanosomatids: Living with polycistronic transcription. Open Biol. 2019;9:190072. PubMed PMC
Vanhollebeke B, Uzureau P, Monteyne D, Pérez-Morga D, Pays E. Cellular and molecular remodeling of the endocytic pathway during differentiation of Trypanosoma brucei bloodstream forms. Eukaryot. Cell. 2010;9:1272–1282. PubMed PMC
MacGregor P, Matthews KR. Identification of the regulatory elements controlling the transmission stage-specific gene expression of PAD1 in Trypanosoma brucei. Nucl. Acids Res. 2012;40:7705–7717. PubMed PMC
MacLeod ET, Maudlin I, Darby AC, Welburn SC. Antioxidants promote establishment of trypanosome infections in tsetse. Parasitology. 2007;134:827–831. PubMed
Szöőr B, Silvester E, Matthews KR. A Leap into the unknown - early events in African trypanosome transmission. Trends Parasitol. 2020;36:266–278. PubMed
Rojas F, et al. Oligopeptide signaling through TbGPR89 drives trypanosome quorum sensing. Cell. 2019;176:306–317. PubMed PMC
Brun R, Schönenberger M. Stimulating effect of citrate and cis-aconitate on the transformation of Trypanosoma brucei bloodstream forms to procyclic forms in vitro. Z. Parasitenkd. 1981;66:17–24. PubMed
Czichos J, Nonnengaesser C, Overath P. Trypanosoma brucei: cis-aconitate and temperature reduction as triggers of synchronous transformation of bloodstream to procyclic trypomastigotes in vitro. Exp. Parasitol. 1986;62:283–291. PubMed
Ziegelbauer K, Quinten M, Schwarz H, Pearson TW, Overath P. Synchronous differentiation of Trypanosoma brucei from bloodstream to procyclic forms in vitro. Eur. J. Biochem. 1990;192:373–378. PubMed
Silvester E, McWilliam KR, Matthews KR. The cytological events and molecular control of life cycle development of Trypanosoma brucei in the mammalian bloodstream. Pathogens. 2017;6:29. PubMed PMC
Quintana JF, Zoltner M, Field MC. Evolving differentiation in African trypanosomes. Trends Parasitol. 2021;37:296–303. PubMed
Naguleswaran A, Doiron N, Roditi I. RNA-Seq analysis validates the use of culture-derived Trypanosoma brucei and provides new markers for mammalian and insect life-cycle stages. BMC Genomics. 2018;19:227. PubMed PMC
Hamza I, Dailey HA. One ring to rule them all: Trafficking of heme and heme synthesis intermediates in the metazoans. Biochim. Biophys. Acta. 2012;1823:1617–1632. PubMed PMC
Kořený L, Oborník M, Horáková E, Waller RS, Lukeš J. The convoluted history of heme biosynthesis. Biol. Rev. 2021 doi: 10.1111/brv.12794.. PubMed DOI
Lane-Serff H, et al. Evolutionary diversification of the trypanosome haptoglobin-haemoglobin receptor from an ancestral haemoglobin receptor. eLife. 2016;5:e13044. PubMed PMC
Eyford BA, et al. Differential protein expression throughout the life cycle of Trypanosoma congolense, a major parasite of cattle in Africa. Mol. Biochem. Parasitol. 2011;177:116–125. PubMed PMC
Kořený L, et al. Aerobic kinetoplastid flagellate Phytomonas does not require heme for viability. Proc. Natl Acad. Sci. USA. 2012;109:3808–3813. PubMed PMC
Horáková E, et al. Catalase compromises the development of the insect and mammalian stages of Trypanosoma brucei. FEBS J. 2020;287:964–977. PubMed
Kristiansen M, et al. Identification of the hemoglobin scavenger receptor. Nature. 2001;409:198–201. PubMed
Vanhollebeke B, Pays E. The trypanolytic factor of human serum: Many ways to enter the parasite, a single way to kill. Mol. Microbiol. 2010;76:806–814. PubMed
Radwanska M, Vereecke N, Deleeuw V, Pinto J, Magez S. Salivarian trypanosomosis: A review of parasites involved, their global distribution and their interaction with the innate and adaptive mammalian host immune system. Front. Immunol. 2018;9:2253. PubMed PMC
Büscher P, et al. Do cryptic reservoirs threaten gambiense-sleeping sickness elimination? Trends Parasitol. 2018;34:197–207. PubMed PMC
Alfituri OA, et al. To the skin and beyond: The immune response to African trypanosomes as they enter and exit the vertebrate host. Front. Immunol. 2020;11:1250. PubMed PMC
Capewell P, et al. The skin is a significant but overlooked anatomical reservoir for vector-borne African trypanosomes. eLife. 2016;5:e17716. PubMed PMC
Cnops J, et al. NK-, NKT- and CD8-derived IFNγ drives myeloid cell activation and erythrophagocytosis, resulting in trypanosomosis-associated acute anemia. PLoS Pathog. 2015;11:e1004964. PubMed PMC
Stijlemans B, de Baetselier P, Magez S, van Ginderachter JA, De Trez C. African trypanosomiasis-associated anemia: The contribution of the interplay between parasites and the mononuclear phagocyte system. Front. Immunol. 2018;9:218. PubMed PMC
Szempruch AJ, et al. Extracellular vesicles from Trypanosoma brucei mediate virulence factor transfer and cause host anemia. Cell. 2016;164:246–257. PubMed PMC
Seed JR, Wenck MA. Role of the long slender to short stumpy transition in the life cycle of the African trypanosomes. Kinetopl. Biol. Dis. 2003;2:3. PubMed PMC
Mony BM, et al. Genome-wide dissection of the quorum sensing signalling pathway in Trypanosoma brucei. Nature. 2014;505:681–685. PubMed PMC
Rojas F, Matthews KR. Quorum sensing in African trypanosomes. Curr. Opin. Microbiol. 2019;52:124–129. PubMed
Schuster S, et al. Unexpected plasticity in the life cycle of Trypanosoma brucei. eLife. 2021;10:e66028. PubMed PMC
Rotureau B, Van Den Abbeele J. Through the dark continent: African trypanosome development in the tsetse fly. Front. Cell Infect. Microbiol. 2013;3:53. PubMed PMC
Silvester E, Young J, Ivens A, Matthews KR. Interspecies quorum sensing in co-infections can manipulate trypanosome transmission potential. Nat. Microbiol. 2017;2:1471–1479. PubMed PMC
Wijers DJ, Willett KC. Factors that may influence the infection rate of Glossina palpalis with Trypanosoma gambiense. II. The number and morphology of the trypanosomes present in the blood of the host at the time of the infected feed. Ann. Trop. Med. Parasitol. 1960;54:341–350. PubMed
Bass KE, Wang CC. The in vitro differentiation of pleomorphic Trypanosoma brucei from bloodstream into procyclic form requires neither intermediary nor short-stumpy stage. Mol. Biochem. Parasitol. 1991;44:261–270. PubMed
Ravel S, Patrel D, Koffi M, Jamonneau V, Cuny G. Cyclical transmission of Trypanosoma brucei gambiense in Glossina palpalis gambiensis displays great differences among field isolates. Acta Trop. 2006;100:151–155. PubMed
Janelle J, et al. Monitoring the pleomorphism of Trypanosoma brucei gambiense isolates in mouse: impact on its transmissibility to Glossina palpalis gambiensis. Infect. Genet. Evol. 2009;9:1260–1264. PubMed
Le Ray D. Vector susceptibility to African trypanosomes. Ann. Soc. Belg. Med. Trop. 1989;69:165–214. PubMed
Camara M, et al. Extravascular dermal trypanosomes in suspected and confirmed cases of gambiense Human African Trypanosomiasis. Clin. Infect. Dis. 2021;73:12–20. PubMed PMC
Haubrich BA, et al. Discovery of an ergosterol-signaling factor that regulates Trypanosoma brucei growth. J. Lip. Res. 2015;56:331–341. PubMed PMC
Kelly S, et al. Functional genomics in Trypanosoma brucei: A collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci. Mol. Biochem. Parasitol. 2007;154:103–109. PubMed PMC
Burkard G, Fragoso CM, Roditi I. Highly efficient stable transformation of bloodstream forms of Trypanosoma brucei. Mol. Biochem. Parasitol. 2007;153:220–223. PubMed
Jones NG, et al. Regulators of Trypanosoma brucei cell cycle progression and differentiation identified using a kinome-wide RNAi screen. PLoS Pathog. 2014;10:e1003886. PubMed PMC