Heme-deficient metabolism and impaired cellular differentiation as an evolutionary trade-off for human infectivity in Trypanosoma brucei gambiense

. 2022 Nov 18 ; 13 (1) : 7075. [epub] 20221118

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36400774
Odkazy

PubMed 36400774
PubMed Central PMC9674590
DOI 10.1038/s41467-022-34501-4
PII: 10.1038/s41467-022-34501-4
Knihovny.cz E-zdroje

Resistance to African trypanosomes in humans relies in part on the high affinity targeting of a trypanosome lytic factor 1 (TLF1) to a trypanosome haptoglobin-hemoglobin receptor (HpHbR). While TLF1 avoidance by the inactivation of HpHbR contributes to Trypanosoma brucei gambiense human infectivity, the evolutionary trade-off of this adaptation is unknown, as the physiological function of the receptor remains to be elucidated. Here we show that uptake of hemoglobin via HpHbR constitutes the sole heme import pathway in the trypanosome bloodstream stage. T. b. gambiense strains carrying the inactivating mutation in HpHbR, as well as genetically engineered T. b. brucei HpHbR knock-out lines show only trace levels of intracellular heme and lack hemoprotein-based enzymatic activities, thereby providing an uncommon example of aerobic parasitic proliferation in the absence of heme. We further show that HpHbR facilitates the developmental progression from proliferating long slender forms to cell cycle-arrested stumpy forms in T. b. brucei. Accordingly, T. b. gambiense was found to be poorly competent for slender-to-stumpy differentiation unless a functional HpHbR receptor derived from T. b. brucei was genetically restored. Altogether, we identify heme-deficient metabolism and disrupted cellular differentiation as two distinct HpHbR-dependent evolutionary trade-offs for T. b. gambiense human infectivity.

Zobrazit více v PubMed

Franco JR, Simarro PP, Diarra A, Jannin JG. Epidemiology of human African trypanosomiasis. Clin. Epidemiol. 2014;6:257–275. PubMed PMC

Hajduk SL, et al. Lysis of Trypanosoma brucei by a toxic subspecies of human high-density lipoprotein. J. Biol. Chem. 1989;264:5210–5217. PubMed

Raper J, Portela MP, Lugli E, Frevert U, Tomlinson S. Trypanosome lytic factors: Novel mediators of human innate immunity. Curr. Opin. Microbiol. 2001;4:402–408. PubMed

Smith AB, Esko JD, Hajduk SL. Killing of trypanosomes by the human haptoglobin-related protein. Science. 1995;268:284–286. PubMed

Vanhamme L, et al. Apolipoprotein L-I is the trypanosome lytic factor of human serum. Nature. 2003;422:83–87. PubMed

Raper J, Fung R, Ghiso J, Nussenzweig V, Tomlinson S. Characterization of a novel trypanosome lytic factor from human serum. Infect. Immun. 1999;67:1910–1916. PubMed PMC

Verdi J, et al. Inducible germline IgMs bridge Trypanosome Lytic Factor assembly and parasite recognition. Cell Host Microbe. 2020;28:79–88.e4. PubMed

Vanhollebeke B, et al. A haptoglobin-hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans. Science. 2008;320:677–681. PubMed

Stødkilde K, Torvund-Jensen M, Moestrup SK, Andersen CB. Structural basis for trypanosomal haem acquisition and susceptibility to the host innate immune system. Nat. Commun. 2014;5:5487. PubMed

Macleod O, et al. A receptor for the complement regulator factor H increases transmission of trypanosomes to tsetse flies. Nat. Commun. 2020;11:1326. PubMed PMC

Schaer DJ, Buehler PW, Alayash AI, Belcher JD, Vercellotti GM. Hemolysis and free hemoglobin revisited: Exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood. 2013;121:1276–1284. PubMed PMC

Kořený L, Lukeš J, Oborník M. Evolution of the haem synthetic pathway in kinetoplastid flagellates: An essential pathway that is not essential after all? Int. J. Parasitol. 2010;40:149–156. PubMed

Horáková E, et al. The Trypanosoma brucei TbHrg protein is a heme transporter involved in the regulation of stage-specific morphological transitions. J. Biol. Chem. 2017;292:6998–7010. PubMed PMC

Cabello-Donayre M, et al. Trypanosomatid parasites rescue heme from endocytosed hemoglobin through lysosomal HRG transporters. Mol. Microbiol. 2016;101:895–908. PubMed

DeJesus E, Kieft R, Albright B, Stephens NA, Hajduk SL. Single amino acid substitution in the group 1 Trypanosoma brucei gambiense haptoglobin-hemoglobin receptor abolishes TLF-1 binding. PLoS Pathog. 2013;9:e1003317. PubMed PMC

Symula RE, et al. Trypanosoma brucei gambiense group 1 is distinguished by a unique amino acid substitution in the HpHb receptor implicated in human serum resistance. PLoS Negl. Trop. Dis. 2012;6:e1728. PubMed PMC

Higgins MK, et al. Structure of the trypanosome haptoglobin hemoglobin receptor and implications for nutrient uptake and innate immunity. Proc. Natl Acad. Sci. USA. 2013;110:1905–1910. PubMed PMC

Uzureau P, et al. Mechanism of Trypanosoma brucei gambiense resistance to human serum. Nature. 2013;501:430–434. PubMed

Kieft R, et al. Mechanism of Trypanosoma brucei gambiense (group 1) resistance to human trypanosome lytic factor. Proc. Natl Acad. Sci. USA. 2010;107:16137–16141. PubMed PMC

Higgins MK, Lane-Serff H, MacGregor P, Carrington MA. Receptor’s tale: An eon in the life of a trypanosome receptor. PLoS Pathog. 2017;26:13:e1006055. PubMed PMC

Welburn SC, Molyneux DH, Maudlin I. Beyond tsetse - implications for research and control of human African trypanosomiasis epidemics. Trends Parasitol. 2016;32:230–241. PubMed

Kraeva N, et al. Catalase in Leishmaniinae: With me or against me? Infect. Genet. Evol. 2017;50:121–127. PubMed

Zhou W, Cross GA, Nes WD. Cholesterol import fails to prevent catalyst-based inhibition of ergosterol synthesis and cell proliferation of Trypanosoma brucei. J. Lipid Res. 2007;48:665–673. PubMed

Nes CR, et al. Novel sterol metabolic network of Trypanosoma brucei procyclic and bloodstream forms. Biochem. J. 2012;443:267–277. PubMed PMC

Kessler RL, Soares MJ, Probst CM, Krieger MA. Trypanosoma cruzi response to sterol biosynthesis inhibitors: Morphophysiological alterations leading to cell death. PLoS One. 2013;8:e55497. PubMed PMC

McCall LI, et al. Targeting ergosterol biosynthesis in Leishmania donovani: Essentiality of sterol 14alpha-demethylase. PLoS Negl. Trop. Dis. 2015;9:e0003588. PubMed PMC

Dauchy FA, et al. Trypanosoma brucei CYP51: Essentiality and targeting therapy in an experimental model. PLoS Negl. Trop. Dis. 2016;10:e0005125. PubMed PMC

Zhang J, et al. The fungal CYP51s: Their functions, structures, related drug resistance, and inhibitors. Front. Microbiol. 2019;10:691. PubMed PMC

Lepesheva GI, et al. Sterol 14alpha-demethylase as a potential target for antitrypanosomal therapy: Enzyme inhibition and parasite cell growth. Chem. Biol. 2007;14:1283–1293. PubMed PMC

Lecordier L, et al. Adaptation of Trypanosoma rhodesiense to hypohaptoglobinaemic serum requires transcription of the APOL1 resistance gene in a RNA polymerase I locus. Mol. Microbiol. 2015;97:397–407. PubMed

Koda Y, Soejima M, Yoshioka N, Kimura H. The haptoglobin-gene deletion responsible for anhaptoglobinemia. Am. J. Hum. Genet. 1998;62:245–252. PubMed PMC

Vanhollebeke B, et al. Distinct roles of haptoglobin-related protein and apolipoprotein L-I in trypanolysis by human serum. Proc. Natl Acad. Sci. USA. 2007;104:4118–4123. PubMed PMC

Clayton C. Regulation of gene expression in trypanosomatids: Living with polycistronic transcription. Open Biol. 2019;9:190072. PubMed PMC

Vanhollebeke B, Uzureau P, Monteyne D, Pérez-Morga D, Pays E. Cellular and molecular remodeling of the endocytic pathway during differentiation of Trypanosoma brucei bloodstream forms. Eukaryot. Cell. 2010;9:1272–1282. PubMed PMC

MacGregor P, Matthews KR. Identification of the regulatory elements controlling the transmission stage-specific gene expression of PAD1 in Trypanosoma brucei. Nucl. Acids Res. 2012;40:7705–7717. PubMed PMC

MacLeod ET, Maudlin I, Darby AC, Welburn SC. Antioxidants promote establishment of trypanosome infections in tsetse. Parasitology. 2007;134:827–831. PubMed

Szöőr B, Silvester E, Matthews KR. A Leap into the unknown - early events in African trypanosome transmission. Trends Parasitol. 2020;36:266–278. PubMed

Rojas F, et al. Oligopeptide signaling through TbGPR89 drives trypanosome quorum sensing. Cell. 2019;176:306–317. PubMed PMC

Brun R, Schönenberger M. Stimulating effect of citrate and cis-aconitate on the transformation of Trypanosoma brucei bloodstream forms to procyclic forms in vitro. Z. Parasitenkd. 1981;66:17–24. PubMed

Czichos J, Nonnengaesser C, Overath P. Trypanosoma brucei: cis-aconitate and temperature reduction as triggers of synchronous transformation of bloodstream to procyclic trypomastigotes in vitro. Exp. Parasitol. 1986;62:283–291. PubMed

Ziegelbauer K, Quinten M, Schwarz H, Pearson TW, Overath P. Synchronous differentiation of Trypanosoma brucei from bloodstream to procyclic forms in vitro. Eur. J. Biochem. 1990;192:373–378. PubMed

Silvester E, McWilliam KR, Matthews KR. The cytological events and molecular control of life cycle development of Trypanosoma brucei in the mammalian bloodstream. Pathogens. 2017;6:29. PubMed PMC

Quintana JF, Zoltner M, Field MC. Evolving differentiation in African trypanosomes. Trends Parasitol. 2021;37:296–303. PubMed

Naguleswaran A, Doiron N, Roditi I. RNA-Seq analysis validates the use of culture-derived Trypanosoma brucei and provides new markers for mammalian and insect life-cycle stages. BMC Genomics. 2018;19:227. PubMed PMC

Hamza I, Dailey HA. One ring to rule them all: Trafficking of heme and heme synthesis intermediates in the metazoans. Biochim. Biophys. Acta. 2012;1823:1617–1632. PubMed PMC

Kořený L, Oborník M, Horáková E, Waller RS, Lukeš J. The convoluted history of heme biosynthesis. Biol. Rev. 2021 doi: 10.1111/brv.12794.. PubMed DOI

Lane-Serff H, et al. Evolutionary diversification of the trypanosome haptoglobin-haemoglobin receptor from an ancestral haemoglobin receptor. eLife. 2016;5:e13044. PubMed PMC

Eyford BA, et al. Differential protein expression throughout the life cycle of Trypanosoma congolense, a major parasite of cattle in Africa. Mol. Biochem. Parasitol. 2011;177:116–125. PubMed PMC

Kořený L, et al. Aerobic kinetoplastid flagellate Phytomonas does not require heme for viability. Proc. Natl Acad. Sci. USA. 2012;109:3808–3813. PubMed PMC

Horáková E, et al. Catalase compromises the development of the insect and mammalian stages of Trypanosoma brucei. FEBS J. 2020;287:964–977. PubMed

Kristiansen M, et al. Identification of the hemoglobin scavenger receptor. Nature. 2001;409:198–201. PubMed

Vanhollebeke B, Pays E. The trypanolytic factor of human serum: Many ways to enter the parasite, a single way to kill. Mol. Microbiol. 2010;76:806–814. PubMed

Radwanska M, Vereecke N, Deleeuw V, Pinto J, Magez S. Salivarian trypanosomosis: A review of parasites involved, their global distribution and their interaction with the innate and adaptive mammalian host immune system. Front. Immunol. 2018;9:2253. PubMed PMC

Büscher P, et al. Do cryptic reservoirs threaten gambiense-sleeping sickness elimination? Trends Parasitol. 2018;34:197–207. PubMed PMC

Alfituri OA, et al. To the skin and beyond: The immune response to African trypanosomes as they enter and exit the vertebrate host. Front. Immunol. 2020;11:1250. PubMed PMC

Capewell P, et al. The skin is a significant but overlooked anatomical reservoir for vector-borne African trypanosomes. eLife. 2016;5:e17716. PubMed PMC

Cnops J, et al. NK-, NKT- and CD8-derived IFNγ drives myeloid cell activation and erythrophagocytosis, resulting in trypanosomosis-associated acute anemia. PLoS Pathog. 2015;11:e1004964. PubMed PMC

Stijlemans B, de Baetselier P, Magez S, van Ginderachter JA, De Trez C. African trypanosomiasis-associated anemia: The contribution of the interplay between parasites and the mononuclear phagocyte system. Front. Immunol. 2018;9:218. PubMed PMC

Szempruch AJ, et al. Extracellular vesicles from Trypanosoma brucei mediate virulence factor transfer and cause host anemia. Cell. 2016;164:246–257. PubMed PMC

Seed JR, Wenck MA. Role of the long slender to short stumpy transition in the life cycle of the African trypanosomes. Kinetopl. Biol. Dis. 2003;2:3. PubMed PMC

Mony BM, et al. Genome-wide dissection of the quorum sensing signalling pathway in Trypanosoma brucei. Nature. 2014;505:681–685. PubMed PMC

Rojas F, Matthews KR. Quorum sensing in African trypanosomes. Curr. Opin. Microbiol. 2019;52:124–129. PubMed

Schuster S, et al. Unexpected plasticity in the life cycle of Trypanosoma brucei. eLife. 2021;10:e66028. PubMed PMC

Rotureau B, Van Den Abbeele J. Through the dark continent: African trypanosome development in the tsetse fly. Front. Cell Infect. Microbiol. 2013;3:53. PubMed PMC

Silvester E, Young J, Ivens A, Matthews KR. Interspecies quorum sensing in co-infections can manipulate trypanosome transmission potential. Nat. Microbiol. 2017;2:1471–1479. PubMed PMC

Wijers DJ, Willett KC. Factors that may influence the infection rate of Glossina palpalis with Trypanosoma gambiense. II. The number and morphology of the trypanosomes present in the blood of the host at the time of the infected feed. Ann. Trop. Med. Parasitol. 1960;54:341–350. PubMed

Bass KE, Wang CC. The in vitro differentiation of pleomorphic Trypanosoma brucei from bloodstream into procyclic form requires neither intermediary nor short-stumpy stage. Mol. Biochem. Parasitol. 1991;44:261–270. PubMed

Ravel S, Patrel D, Koffi M, Jamonneau V, Cuny G. Cyclical transmission of Trypanosoma brucei gambiense in Glossina palpalis gambiensis displays great differences among field isolates. Acta Trop. 2006;100:151–155. PubMed

Janelle J, et al. Monitoring the pleomorphism of Trypanosoma brucei gambiense isolates in mouse: impact on its transmissibility to Glossina palpalis gambiensis. Infect. Genet. Evol. 2009;9:1260–1264. PubMed

Le Ray D. Vector susceptibility to African trypanosomes. Ann. Soc. Belg. Med. Trop. 1989;69:165–214. PubMed

Camara M, et al. Extravascular dermal trypanosomes in suspected and confirmed cases of gambiense Human African Trypanosomiasis. Clin. Infect. Dis. 2021;73:12–20. PubMed PMC

Haubrich BA, et al. Discovery of an ergosterol-signaling factor that regulates Trypanosoma brucei growth. J. Lip. Res. 2015;56:331–341. PubMed PMC

Kelly S, et al. Functional genomics in Trypanosoma brucei: A collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci. Mol. Biochem. Parasitol. 2007;154:103–109. PubMed PMC

Burkard G, Fragoso CM, Roditi I. Highly efficient stable transformation of bloodstream forms of Trypanosoma brucei. Mol. Biochem. Parasitol. 2007;153:220–223. PubMed

Jones NG, et al. Regulators of Trypanosoma brucei cell cycle progression and differentiation identified using a kinome-wide RNAi screen. PLoS Pathog. 2014;10:e1003886. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Haptoglobin is dispensable for haemoglobin uptake by Trypanosoma brucei

. 2024 ; 15 () : 1441131. [epub] 20240718

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace