Synthesis of New Quinoline-Piperonal Hybrids as Potential Drugs against Alzheimer's Disease

. 2019 Aug 14 ; 20 (16) : . [epub] 20190814

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31416113

Grantová podpora
308225/2018-0 Conselho Nacional de Pesquisa (CNPq)
E-02/202.961/2017 Fundação de Amparo a Pesquisa do Rio de Janeiro (FAPERJ)
CAPES Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Excellence project UHK CEP - Centrální evidence projektů

Six quinoline-piperonal hybrids were synthesized and evaluated as potential drugs against Alzheimer's disease (AD). Theoretical analysis of the pharmacokinetic and toxicological properties of the compounds suggest that they present good oral bio-availability and are also capable of penetrating the blood-brain barrier, qualifying as leads for new drugs against AD. Evaluation of their inhibitory capacity against acetyl- and butyrilcholinesterases (AChE and BChE) through Ellmann's test showed that three compounds present promising results with one of them being capable of inhibiting both enzymes. Further docking studies of the six compounds synthesized helped to elucidate the main interactions that may be responsible for the inhibitory activities observed.

Zobrazit více v PubMed

Burns A., Byrne E.J., Maurer K. Alzheimer’s disease. Lancet. 2002;360:163–165. doi: 10.1016/S0140-6736(02)09420-5. PubMed DOI

Kuca K., Soukup O., Maresova P., Korabecny J., Nepovimova E., Klimova B., Honegr J., Ramalho T.C., França T.C.C. Current Approaches Against Alzheimer’s Disease in Clinical Trials. J. Braz. Chem. Soc. 2016;27:641–649. doi: 10.5935/0103-5053.20160048. DOI

Maresova P., Mohelska H., Dolejs J., Kuca K. Socio-economic Aspects of Alzheimer’s Disease. Curr. Alzheimer Res. 2015;12:903–911. doi: 10.2174/156720501209151019111448. PubMed DOI

Blennow K., de Leon M.J., Zetterberg H. Alzheimer’s disease. Lancet. 2006;368:387–403. doi: 10.1016/S0140-6736(06)69113-7. PubMed DOI

Dalvi A. Alzheimer’s Disease. Disease-a-Month. 2012;58:666–677. doi: 10.1016/j.disamonth.2012.08.008. PubMed DOI

Grossberg G.T. Cholinesterase Inhibitors for the Treatment of Alzheimer’s Disease. Curr. Ther. Res. 2003;64:216–235. doi: 10.1016/S0011-393X(03)00059-6. PubMed DOI PMC

Cheffer A., Ulrich H. Inhibition Mechanism of Rat α3β4 Nicotinic Acetylcholine Receptor by the Alzheimer Therapeutic Tacrine. Biochemistry. 2011;50:1763–1770. doi: 10.1021/bi101789y. PubMed DOI

Romero A., Cacabelos R., Oset-Gasque M.J., Samadi A., Marco-Contelles J. Novel tacrine-related drugs as potential candidates for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2013;23:1916–1922. doi: 10.1016/j.bmcl.2013.02.017. PubMed DOI

Spilovska K., Korabecny J., Horova A., Musilek K., Nepovimova E., Drtinova L., Gazova Z., Siposova K., Dolezal R., Jun D., et al. Design, synthesis and in vitro testing of 7-methoxytacrine-amantadine analogues: a novel cholinesterase inhibitors for the treatment of Alzheimer’s disease. Med. Chem. Res. 2015;24:2645–2655. doi: 10.1007/s00044-015-1316-x. DOI

Nepovimova E., Korabecny J., Dolezal R., Nguyen T.D., Jun D., Soukup O., Pasdiorova M., Jost P., Muckova L., Malinak D., et al. A 7-methoxytacrine–4-pyridinealdoxime hybrid as a novel prophylactic agent with reactivation properties in organophosphate intoxication. Toxicol. Res. 2016;5:1012–1016. doi: 10.1039/C6TX00130K. PubMed DOI PMC

Kumar S., Bawa S., Gupta H. Biological Activities of Quinoline Derivatives. Mini-Rev. Med. Chem. 2009;9:1648–1654. doi: 10.2174/138955709791012247. PubMed DOI

Barreiro E.J., Fraga C.A.M., Miranda A.L.P., Rodrigues C.R. A química medicinal de N-acilidrazonas: Novos compostos-protótipos de fármacos analgésicos, antiinflamatórios e anti-trombóticos. Quim. Nov. 2002;25:129–148. doi: 10.1590/S0100-40422002000100022. DOI

Petronilho E.d.C., Rennó M.N., Castro N.G., da Silva F.M.R., Pinto A.d.C., Figueroa-Villar J.D. Design, synthesis, and evaluation of guanylhydrazones as potential inhibitors or reactivators of acetylcholinesterase. J. Enzyme Inhib. Med. Chem. 2016;31:1069–1078. doi: 10.3109/14756366.2015.1094468. PubMed DOI

Ekeley J.B., Klemme M.S. The nitration of piperonal. J. Am. Chem. Soc. 1928;50:2711–2715. doi: 10.1021/ja01397a019. DOI

Bogert M.T., Elder F.R. The synthesis of 6-hydroxypiperonyli acid and incidental compounds. J. Am. Chem. Soc. 1929;51:532–539. doi: 10.1021/ja01377a025. DOI

Jacobs W.A., Heidelberger M. The Ferrous sulfate and ammonia method for the reduction of nitro to amino compounds. J. Am. Chem. Soc. 1917;39:1435–1439. doi: 10.1021/ja02252a017. DOI

Marco-Contelles J., Pérez-Mayoral E., Samadi A., Carreiras M.d.C., Soriano E. Recent Advances in the Friedländer Reaction. Chem. Rev. 2009;109:2652–2671. doi: 10.1021/cr800482c. PubMed DOI

Mishra G., Sachan N., Chawla P. Synthesis and Evaluation of Thiazolidinedione-Coumarin Adducts as Antidiabetic, Anti-Inflammatory and Antioxidant Agents. Lett. Org. Chem. 2015;12:429–455. doi: 10.2174/1570178612666150424235603. DOI

Corma A., Martín-Aranda R.M. Alkaline-substituted sepiolites as a new type of strong base catalyst. J. Catal. 1991;130:130–137. doi: 10.1016/0021-9517(91)90097-N. DOI

Borges M.N., Messeder J.C., Figueroa-Villar J.D. Synthesis, anti-Trypanosoma cruzi activity and micelle interaction studies of bisguanylhydrazones analogous to pentamidine. Eur. J. Med. Chem. 2004;39:925–929. doi: 10.1016/j.ejmech.2004.07.001. PubMed DOI

Hehre W.J., Deppmeier B.J. PC SPARTAN Pro. Wavefunction, Inc., Irvine, 1999. Wavefunction; Irvine, CA, USA: 1999.

Lipinski C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods. 2000;44:235–249. doi: 10.1016/S1056-8719(00)00107-6. PubMed DOI

Lipinski C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004;1:337–341. doi: 10.1016/j.ddtec.2004.11.007. PubMed DOI

Ma X., Chen C., Yang J. Predictive model of blood-brain barrier penetration of organic compounds1. Acta Pharmacol. Sin. 2005;26:500–512. doi: 10.1111/j.1745-7254.2005.00068.x. PubMed DOI

Ferreira Neto D.C., de Souza Ferreira M., da Conceição Petronilho E., Alencar Lima J., Oliveira Francisco de Azeredo S., de Oliveira Carneiro Brum J., Jorge do Nascimento C., Figueroa Villar J.D. A new guanylhydrazone derivative as a potential acetylcholinesterase inhibitor for Alzheimer’s disease: Synthesis, molecular docking, biological evaluation and kinetic studies by nuclear magnetic resonance. RSC Adv. 2017;7:33944–33952. doi: 10.1039/C7RA04180B. DOI

Ellman G.L., Courtney K.D., Andres V., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI

Pacheco G., Palacios-Esquivel R., Moss D.E. Cholinesterase inhibitors proposed for treating dementia in Alzheimer’s disease: Selectivity toward human brain acetylcholinesterase compared with butyrylcholinesterase. J. Pharmacol. Exp. Ther. 1995;274:767–770. PubMed

Pagliosa L.B., Monteiro S.C., Silva K.B., de Andrade J.P., Dutilh J., Bastida J., Cammarota M., Zuanazzi J.A.S. Effect of isoquinoline alkaloids from two Hippeastrum species on in vitro acetylcholinesterase activity. Phytomedicine. 2010;17:698–701. doi: 10.1016/j.phymed.2009.10.003. PubMed DOI

Komloova M., Musilek K., Dolezal M., Gunn-Moore F., Kuca K. Structure-Activity Relationship of Quaternary Acetylcholinesterase Inhibitors—Outlook for Early Myasthenia Gravis Treatment. Curr. Med. Chem. 2010;17:1810–1824. doi: 10.2174/092986710791111198. PubMed DOI

Sugimoto H., Tsuchiya Y., Sugumi H., Higurashi K., Karibe N., Iimura Y., Sasaki A., Araki S., Yamanishi Y., Yamatsu K. Synthesis and structure-activity relationships of acetylcholinesterase inhibitors: 1-benzyl-4-(2-phthalimidoethyl)piperidine, and related derivatives. J. Med. Chem. 1992;35:4542–4548. doi: 10.1021/jm00102a005. PubMed DOI

Tumiatti V., Rosini M., Bartolini M., Cavalli A., Marucci G., Andrisano V., Angeli P., Banzi R., Minarini A., Recanatini M., et al. Structure−Activity Relationships of Acetylcholinesterase Noncovalent Inhibitors Based on a Polyamine Backbone. 2. Role of the Substituents on the Phenyl Ring and Nitrogen Atoms of Caproctamine. J. Med. Chem. 2003;46:954–966. doi: 10.1021/jm021055+. PubMed DOI

Feitosa Da Cunha S., Soares X., Vieira A.A.A., Delfino R.T.T., Figueroa-Villar D. NMR determination of Electrophorus electricus acetylcholinesterase inhibition and reactivation by neutral oximes. Bioorg. Med. Chem. 2013;21:5923–5930. doi: 10.1016/j.bmc.2013.05.063. PubMed DOI

Takeuchi K., Wagner G. NMR studies of protein interactions. Curr. Opin. Struct. Biol. 2006;16:109–117. doi: 10.1016/j.sbi.2006.01.006. PubMed DOI

Goldflam M., Tarragó T., Gairí M., Giralt E. NMR Studies of Protein–Ligand Interactions. Methods Mol. Biol. 2012;831:233–259. PubMed

Figueroa-Villar J.D. Design, synthesis, structure, toxicology and in vitro testing of three novel agents for Alzheimer’s disease. RSC Adv. 2017;7:23457–23467. doi: 10.1039/C6RA27042E. DOI

Ferreira Neto D.C., Alencar Lima J., Sobreiro Francisco Diz de Almeida J., Costa França T.C., Jorge do Nascimento C., Figueroa Villar J.D. New semicarbazones as gorge-spanning ligands of acetylcholinesterase and potential new drugs against Alzheimer’s disease: Synthesis, molecular modeling, NMR, and biological evaluation. J. Biomol. Struct. Dyn. 2018;36:4099–4113. doi: 10.1080/07391102.2017.1407676. PubMed DOI

Kontoyianni M., McClellan L.M., Sokol G.S. Evaluation of docking performance: Comparative data on docking algorithms. J. Med. Chem. 2004;47:558–565. doi: 10.1021/jm0302997. PubMed DOI

Campbell K.N., Hopper P.F., Campbell B.K. The Preparation of Methylenedioxy-Methoxybenzaldehydes. J. Org. Chem. 1951;16:1736–1741. doi: 10.1021/jo50005a011. DOI

Lima J.A., Costa R.S., Epifânio R.A., Castro N.G., Rocha M.S., Pinto A.C. Geissospermum vellosii stembark. Pharmacol. Biochem. Behav. 2009;92:508–513. doi: 10.1016/j.pbb.2009.01.024. PubMed DOI

Swain M. chemicalize.orgc hemicalize.org by ChemAxon Ltd. J. Chem. Inf. Model. 2012;52:613–615. doi: 10.1021/ci300046g. DOI

Rocha G.B., Freire R.O., Simas A.M., Stewart J.J.P. RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. J. Comput. Chem. 2006;27:1101–1111. doi: 10.1002/jcc.20425. PubMed DOI

Guex N., Peitsch M.C. SWISS-MODEL and Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis. 1997;18:2714–2723. doi: 10.1002/elps.1150181505. PubMed DOI

Guex N., Peitsch M.C., Schwede T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis. 2009;30:S162–S173. doi: 10.1002/elps.200900140. PubMed DOI

Thomsen R., Christensen M.H. MolDock: A new technique for high accuracy molecular docking. J. Med. Chem. 2006;49:3315–3321. doi: 10.1021/jm051197e. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...