Synthesis of New Quinoline-Piperonal Hybrids as Potential Drugs against Alzheimer's Disease
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
308225/2018-0
Conselho Nacional de Pesquisa (CNPq)
E-02/202.961/2017
Fundação de Amparo a Pesquisa do Rio de Janeiro (FAPERJ)
CAPES
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Excellence project
UHK
CEP - Centrální evidence projektů
PubMed
31416113
PubMed Central
PMC6720848
DOI
10.3390/ijms20163944
PII: ijms20163944
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, acetylcholinesterase, guanil-hydrazones, piperonal, quinolines,
- MeSH
- Alzheimerova nemoc farmakoterapie metabolismus MeSH
- benzaldehydy * chemie MeSH
- benzodioxoly * chemie MeSH
- chinoliny * chemie MeSH
- cholinesterasové inhibitory chemická syntéza chemie farmakokinetika farmakologie MeSH
- kinetika MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie MeSH
- molekulární struktura MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- techniky syntetické chemie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- benzaldehydy * MeSH
- benzodioxoly * MeSH
- chinoliny * MeSH
- cholinesterasové inhibitory MeSH
- piperonal MeSH Prohlížeč
- quinoline MeSH Prohlížeč
Six quinoline-piperonal hybrids were synthesized and evaluated as potential drugs against Alzheimer's disease (AD). Theoretical analysis of the pharmacokinetic and toxicological properties of the compounds suggest that they present good oral bio-availability and are also capable of penetrating the blood-brain barrier, qualifying as leads for new drugs against AD. Evaluation of their inhibitory capacity against acetyl- and butyrilcholinesterases (AChE and BChE) through Ellmann's test showed that three compounds present promising results with one of them being capable of inhibiting both enzymes. Further docking studies of the six compounds synthesized helped to elucidate the main interactions that may be responsible for the inhibitory activities observed.
Zobrazit více v PubMed
Burns A., Byrne E.J., Maurer K. Alzheimer’s disease. Lancet. 2002;360:163–165. doi: 10.1016/S0140-6736(02)09420-5. PubMed DOI
Kuca K., Soukup O., Maresova P., Korabecny J., Nepovimova E., Klimova B., Honegr J., Ramalho T.C., França T.C.C. Current Approaches Against Alzheimer’s Disease in Clinical Trials. J. Braz. Chem. Soc. 2016;27:641–649. doi: 10.5935/0103-5053.20160048. DOI
Maresova P., Mohelska H., Dolejs J., Kuca K. Socio-economic Aspects of Alzheimer’s Disease. Curr. Alzheimer Res. 2015;12:903–911. doi: 10.2174/156720501209151019111448. PubMed DOI
Blennow K., de Leon M.J., Zetterberg H. Alzheimer’s disease. Lancet. 2006;368:387–403. doi: 10.1016/S0140-6736(06)69113-7. PubMed DOI
Dalvi A. Alzheimer’s Disease. Disease-a-Month. 2012;58:666–677. doi: 10.1016/j.disamonth.2012.08.008. PubMed DOI
Grossberg G.T. Cholinesterase Inhibitors for the Treatment of Alzheimer’s Disease. Curr. Ther. Res. 2003;64:216–235. doi: 10.1016/S0011-393X(03)00059-6. PubMed DOI PMC
Cheffer A., Ulrich H. Inhibition Mechanism of Rat α3β4 Nicotinic Acetylcholine Receptor by the Alzheimer Therapeutic Tacrine. Biochemistry. 2011;50:1763–1770. doi: 10.1021/bi101789y. PubMed DOI
Romero A., Cacabelos R., Oset-Gasque M.J., Samadi A., Marco-Contelles J. Novel tacrine-related drugs as potential candidates for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2013;23:1916–1922. doi: 10.1016/j.bmcl.2013.02.017. PubMed DOI
Spilovska K., Korabecny J., Horova A., Musilek K., Nepovimova E., Drtinova L., Gazova Z., Siposova K., Dolezal R., Jun D., et al. Design, synthesis and in vitro testing of 7-methoxytacrine-amantadine analogues: a novel cholinesterase inhibitors for the treatment of Alzheimer’s disease. Med. Chem. Res. 2015;24:2645–2655. doi: 10.1007/s00044-015-1316-x. DOI
Nepovimova E., Korabecny J., Dolezal R., Nguyen T.D., Jun D., Soukup O., Pasdiorova M., Jost P., Muckova L., Malinak D., et al. A 7-methoxytacrine–4-pyridinealdoxime hybrid as a novel prophylactic agent with reactivation properties in organophosphate intoxication. Toxicol. Res. 2016;5:1012–1016. doi: 10.1039/C6TX00130K. PubMed DOI PMC
Kumar S., Bawa S., Gupta H. Biological Activities of Quinoline Derivatives. Mini-Rev. Med. Chem. 2009;9:1648–1654. doi: 10.2174/138955709791012247. PubMed DOI
Barreiro E.J., Fraga C.A.M., Miranda A.L.P., Rodrigues C.R. A química medicinal de N-acilidrazonas: Novos compostos-protótipos de fármacos analgésicos, antiinflamatórios e anti-trombóticos. Quim. Nov. 2002;25:129–148. doi: 10.1590/S0100-40422002000100022. DOI
Petronilho E.d.C., Rennó M.N., Castro N.G., da Silva F.M.R., Pinto A.d.C., Figueroa-Villar J.D. Design, synthesis, and evaluation of guanylhydrazones as potential inhibitors or reactivators of acetylcholinesterase. J. Enzyme Inhib. Med. Chem. 2016;31:1069–1078. doi: 10.3109/14756366.2015.1094468. PubMed DOI
Ekeley J.B., Klemme M.S. The nitration of piperonal. J. Am. Chem. Soc. 1928;50:2711–2715. doi: 10.1021/ja01397a019. DOI
Bogert M.T., Elder F.R. The synthesis of 6-hydroxypiperonyli acid and incidental compounds. J. Am. Chem. Soc. 1929;51:532–539. doi: 10.1021/ja01377a025. DOI
Jacobs W.A., Heidelberger M. The Ferrous sulfate and ammonia method for the reduction of nitro to amino compounds. J. Am. Chem. Soc. 1917;39:1435–1439. doi: 10.1021/ja02252a017. DOI
Marco-Contelles J., Pérez-Mayoral E., Samadi A., Carreiras M.d.C., Soriano E. Recent Advances in the Friedländer Reaction. Chem. Rev. 2009;109:2652–2671. doi: 10.1021/cr800482c. PubMed DOI
Mishra G., Sachan N., Chawla P. Synthesis and Evaluation of Thiazolidinedione-Coumarin Adducts as Antidiabetic, Anti-Inflammatory and Antioxidant Agents. Lett. Org. Chem. 2015;12:429–455. doi: 10.2174/1570178612666150424235603. DOI
Corma A., Martín-Aranda R.M. Alkaline-substituted sepiolites as a new type of strong base catalyst. J. Catal. 1991;130:130–137. doi: 10.1016/0021-9517(91)90097-N. DOI
Borges M.N., Messeder J.C., Figueroa-Villar J.D. Synthesis, anti-Trypanosoma cruzi activity and micelle interaction studies of bisguanylhydrazones analogous to pentamidine. Eur. J. Med. Chem. 2004;39:925–929. doi: 10.1016/j.ejmech.2004.07.001. PubMed DOI
Hehre W.J., Deppmeier B.J. PC SPARTAN Pro. Wavefunction, Inc., Irvine, 1999. Wavefunction; Irvine, CA, USA: 1999.
Lipinski C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods. 2000;44:235–249. doi: 10.1016/S1056-8719(00)00107-6. PubMed DOI
Lipinski C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004;1:337–341. doi: 10.1016/j.ddtec.2004.11.007. PubMed DOI
Ma X., Chen C., Yang J. Predictive model of blood-brain barrier penetration of organic compounds1. Acta Pharmacol. Sin. 2005;26:500–512. doi: 10.1111/j.1745-7254.2005.00068.x. PubMed DOI
Ferreira Neto D.C., de Souza Ferreira M., da Conceição Petronilho E., Alencar Lima J., Oliveira Francisco de Azeredo S., de Oliveira Carneiro Brum J., Jorge do Nascimento C., Figueroa Villar J.D. A new guanylhydrazone derivative as a potential acetylcholinesterase inhibitor for Alzheimer’s disease: Synthesis, molecular docking, biological evaluation and kinetic studies by nuclear magnetic resonance. RSC Adv. 2017;7:33944–33952. doi: 10.1039/C7RA04180B. DOI
Ellman G.L., Courtney K.D., Andres V., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI
Pacheco G., Palacios-Esquivel R., Moss D.E. Cholinesterase inhibitors proposed for treating dementia in Alzheimer’s disease: Selectivity toward human brain acetylcholinesterase compared with butyrylcholinesterase. J. Pharmacol. Exp. Ther. 1995;274:767–770. PubMed
Pagliosa L.B., Monteiro S.C., Silva K.B., de Andrade J.P., Dutilh J., Bastida J., Cammarota M., Zuanazzi J.A.S. Effect of isoquinoline alkaloids from two Hippeastrum species on in vitro acetylcholinesterase activity. Phytomedicine. 2010;17:698–701. doi: 10.1016/j.phymed.2009.10.003. PubMed DOI
Komloova M., Musilek K., Dolezal M., Gunn-Moore F., Kuca K. Structure-Activity Relationship of Quaternary Acetylcholinesterase Inhibitors—Outlook for Early Myasthenia Gravis Treatment. Curr. Med. Chem. 2010;17:1810–1824. doi: 10.2174/092986710791111198. PubMed DOI
Sugimoto H., Tsuchiya Y., Sugumi H., Higurashi K., Karibe N., Iimura Y., Sasaki A., Araki S., Yamanishi Y., Yamatsu K. Synthesis and structure-activity relationships of acetylcholinesterase inhibitors: 1-benzyl-4-(2-phthalimidoethyl)piperidine, and related derivatives. J. Med. Chem. 1992;35:4542–4548. doi: 10.1021/jm00102a005. PubMed DOI
Tumiatti V., Rosini M., Bartolini M., Cavalli A., Marucci G., Andrisano V., Angeli P., Banzi R., Minarini A., Recanatini M., et al. Structure−Activity Relationships of Acetylcholinesterase Noncovalent Inhibitors Based on a Polyamine Backbone. 2. Role of the Substituents on the Phenyl Ring and Nitrogen Atoms of Caproctamine. J. Med. Chem. 2003;46:954–966. doi: 10.1021/jm021055+. PubMed DOI
Feitosa Da Cunha S., Soares X., Vieira A.A.A., Delfino R.T.T., Figueroa-Villar D. NMR determination of Electrophorus electricus acetylcholinesterase inhibition and reactivation by neutral oximes. Bioorg. Med. Chem. 2013;21:5923–5930. doi: 10.1016/j.bmc.2013.05.063. PubMed DOI
Takeuchi K., Wagner G. NMR studies of protein interactions. Curr. Opin. Struct. Biol. 2006;16:109–117. doi: 10.1016/j.sbi.2006.01.006. PubMed DOI
Goldflam M., Tarragó T., Gairí M., Giralt E. NMR Studies of Protein–Ligand Interactions. Methods Mol. Biol. 2012;831:233–259. PubMed
Figueroa-Villar J.D. Design, synthesis, structure, toxicology and in vitro testing of three novel agents for Alzheimer’s disease. RSC Adv. 2017;7:23457–23467. doi: 10.1039/C6RA27042E. DOI
Ferreira Neto D.C., Alencar Lima J., Sobreiro Francisco Diz de Almeida J., Costa França T.C., Jorge do Nascimento C., Figueroa Villar J.D. New semicarbazones as gorge-spanning ligands of acetylcholinesterase and potential new drugs against Alzheimer’s disease: Synthesis, molecular modeling, NMR, and biological evaluation. J. Biomol. Struct. Dyn. 2018;36:4099–4113. doi: 10.1080/07391102.2017.1407676. PubMed DOI
Kontoyianni M., McClellan L.M., Sokol G.S. Evaluation of docking performance: Comparative data on docking algorithms. J. Med. Chem. 2004;47:558–565. doi: 10.1021/jm0302997. PubMed DOI
Campbell K.N., Hopper P.F., Campbell B.K. The Preparation of Methylenedioxy-Methoxybenzaldehydes. J. Org. Chem. 1951;16:1736–1741. doi: 10.1021/jo50005a011. DOI
Lima J.A., Costa R.S., Epifânio R.A., Castro N.G., Rocha M.S., Pinto A.C. Geissospermum vellosii stembark. Pharmacol. Biochem. Behav. 2009;92:508–513. doi: 10.1016/j.pbb.2009.01.024. PubMed DOI
Swain M. chemicalize.orgc hemicalize.org by ChemAxon Ltd. J. Chem. Inf. Model. 2012;52:613–615. doi: 10.1021/ci300046g. DOI
Rocha G.B., Freire R.O., Simas A.M., Stewart J.J.P. RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. J. Comput. Chem. 2006;27:1101–1111. doi: 10.1002/jcc.20425. PubMed DOI
Guex N., Peitsch M.C. SWISS-MODEL and Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis. 1997;18:2714–2723. doi: 10.1002/elps.1150181505. PubMed DOI
Guex N., Peitsch M.C., Schwede T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis. 2009;30:S162–S173. doi: 10.1002/elps.200900140. PubMed DOI
Thomsen R., Christensen M.H. MolDock: A new technique for high accuracy molecular docking. J. Med. Chem. 2006;49:3315–3321. doi: 10.1021/jm051197e. PubMed DOI