Long-QT founder variant T309I-Kv7.1 with dominant negative pattern may predispose delayed afterdepolarizations under β-adrenergic stimulation
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33574382
PubMed Central
PMC7878757
DOI
10.1038/s41598-021-81670-1
PII: 10.1038/s41598-021-81670-1
Knihovny.cz E-zdroje
- MeSH
- beta blokátory aplikace a dávkování škodlivé účinky MeSH
- detekce genetických nosičů MeSH
- dospělí MeSH
- draslíkový kanál KCNQ1 genetika MeSH
- fenotyp MeSH
- genetická predispozice k nemoci * MeSH
- genetické asociační studie MeSH
- genotyp MeSH
- haplotypy genetika MeSH
- heterozygot MeSH
- homozygot MeSH
- lidé MeSH
- mutace genetika MeSH
- rodokmen MeSH
- syndrom dlouhého QT genetika patologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- beta blokátory MeSH
- draslíkový kanál KCNQ1 MeSH
- KCNQ1 protein, human MeSH Prohlížeč
The variant c.926C > T (p.T309I) in KCNQ1 gene was identified in 10 putatively unrelated Czech families with long QT syndrome (LQTS). Mutation carriers (24 heterozygous individuals) were more symptomatic compared to their non-affected relatives (17 individuals). The carriers showed a mild LQTS phenotype including a longer QTc interval at rest (466 ± 24 ms vs. 418 ± 20 ms) and after exercise (508 ± 32 ms vs. 417 ± 24 ms), 4 syncopes and 2 aborted cardiac arrests. The same haplotype associated with the c.926C > T variant was identified in all probands. Using the whole cell patch clamp technique and confocal microscopy, a complete loss of channel function was revealed in the homozygous setting, caused by an impaired channel trafficking. Dominant negativity with preserved reactivity to β-adrenergic stimulation was apparent in the heterozygous setting. In simulations on a human ventricular cell model, the dysfunction resulted in delayed afterdepolarizations (DADs) and premature action potentials under β-adrenergic stimulation that could be prevented by a slight inhibition of calcium current. We conclude that the KCNQ1 variant c.926C > T is the first identified LQTS-related founder mutation in Central Europe. The dominant negative channel dysfunction may lead to DADs under β-adrenergic stimulation. Inhibition of calcium current could be possible therapeutic strategy in LQTS1 patients refractory to β-blocker therapy.
Zobrazit více v PubMed
Schwartz PJ, et al. Prevalence of the congenital long QT syndrome. Circulation. 2009;120:1761–1767. PubMed PMC
Schwartz PJ, Crotti L, Insolia R. Long-QT syndrome: from genetics to management. Circ. Arrhythm. Electrophysiol. 2012;5:868–877. PubMed PMC
Crotti L, et al. Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation. 2013;127:1009–1017. PubMed PMC
Tester DJ, Will ML, Haglund CM, Ackerman MJ. Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm. 2005;2:507–517. PubMed
Kapplinger JD, et al. Spectrum and prevalence of mutations from the first 2,500 consecutive unrelated patients referred for the FAMILION® long QT syndrome genetic test. Heart Rhythm. 2009;6:1297–1303. PubMed PMC
Adler A, et al. An international, multicentered, evidence-based reappraisal of genes reported to cause congenital long QT syndrome. Circulation. 2020;141:412–428. PubMed PMC
Russell MW, Dick M, Collins FS, Brody LC. KVLQT1 mutations in three families with familial or sporadic long QT syndrome. Hum. Mol. Genet. 1996;5:1319–1324. PubMed
Piippo K, et al. A founder mutation of the potassium channel KCNQ1 in long QT syndrome: Implications for estimation of disease prevalence and molecular diagnostics. J. Am. Coll. Cardiol. 2001;37:562–568. PubMed
Brink PA, et al. Phenotypic variability and unusual clinical severity of congenital long-QT syndrome in a founder population. Circulation. 2005;112:2602–2610. PubMed
Fodstad H, et al. Molecular characterization of two founder mutations causing long QT syndrome and identification of compound heterozygous patients. Ann. Med. 2006;38:294–304. PubMed
Arbour L, et al. A KCNQ1 V205M missense mutation causes a high rate of long QT syndrome in a First Nations community of northern British Columbia: a community-based approach to understanding the impact. Genet. Med. 2008;10:545–550. PubMed
Bhuiyan ZA, et al. Clinical and genetic analysis of long QT syndrome in children from six families in Saudi Arabia: Are they different? Pediatr. Cardiol. 2009;30:490–501. PubMed
Marjamaa A, et al. High prevalence of four long QT syndrome founder mutations in the Finnish population. Ann. Med. 2009;41:234–240. PubMed PMC
Winbo A, Diamant U-B, Stattin E-L, Jensen SM, Rydberg A. Low incidence of sudden cardiac death in a Swedish Y111C type 1 long-QT syndrome population. Circ. Cardiovasc. Genet. 2009;2:558–564. PubMed
Eldstrom J, et al. Mechanistic basis for LQT1 caused by S3 mutations in the KCNQ1 subunit of IKs. J. Gen. Physiol. 2010;135:433–448. PubMed PMC
Gray C, et al. Expression of a common LQT1 mutation in five apparently unrelated families in a regional inherited arrhythmia clinic. J. Cardiovasc. Electrophysiol. 2010;21:296–300. PubMed
Hofman N, Jongbloed R, Postema PG, Nannenberg E, Alders M, Wilde AAM. Recurrent and founder mutations in the Netherlands: the long-QT syndrome. Neth. Heart J. 2011;19:10–16. PubMed PMC
Stattin E-L, et al. Founder mutations characterise the mutation panorama in 200 Swedish index cases referred for Long QT syndrome genetic testing. BMC Cardiovasc. Disord. 2012;12:95. doi: 10.1186/1471-2261-12-95. PubMed DOI PMC
Zafari Z, Dalili M, Zeinali S, Saber S, Fazeli Far AF, Akbari MT. Identification and characterization of a novel recessive KCNQ1 mutation associated with Romano-Ward Long-QT syndrome in two Iranian families. J. Electrocardiol. 2017;50:912–918. PubMed
Offerhaus JA, Bezzina CR, Wilde AAM. Epidemiology of inherited arrhythmias. Nat. Rev. Cardiol. 2020;17:205–215. PubMed
Priori SG, et al. ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC) Eur. Heart J. 2015;36:2793–2867. PubMed
Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics. 2015;31:2745–2747. PubMed PMC
Shihab HA, Gough J, Mort M, Cooper DN, Day INM, Gaunt TR. Ranking non-synonymous single nucleotide polymorphisms based on disease concepts. Hum. Genomics. 2014;8:11. doi: 10.1186/1479-7364-8-11. PubMed DOI PMC
López-Ferrando V, Gazzo A, de la Cruz X, Orozco M, Gelpí JL. PMut: a web-based tool for the annotation of pathological variants on proteins, 2017 update. Nucleic Acids Res. 2017;45:W222–W228. PubMed PMC
Lek M, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–291. PubMed PMC
Kula R, Bébarová M, Matejovič P, Šimurda J, Pásek M. Current density as routine parameter for description of ionic membrane current: is it always the best option? Prog. Biophys. Mol. Biol. 2020;157:24–32. doi: 10.1016/j.pbiomolbio.2019.11.011. PubMed DOI
Hrabcová D, Pásek M, Šimurda J, Christé G. Effect of ion concentration changes in the limited extracellular spaces on sarcolemmal ion transport and Ca2+ turnover in a model of human ventricular cardiomyocyte. Int. J. Mol. Sci. 2013;14:24271–24292. PubMed PMC
Kula R, Bébarová M, Matejovič P, Šimurda J, Pásek M. Distribution of data in cellular electrophysiology: Is it always normal? Prog. Biophys. Mol. Biol. 2020;157:11–17. PubMed
Jost N, et al. Restricting excessive cardiac action potential and QT prolongation: a vital role for IKs in human ventricular muscle. Circulation. 2005;112:1392–1399. PubMed
Roden DM, Yang T. Protecting the Heart Against Arrhythmias: Potassium Current Physiology and Repolarization Reserve. Circulation. 2005;112:1376–1378. PubMed
Spätjens RLHMG, et al. Long-QT mutation p.K557E-Kv7.1: dominant-negative suppression of IKs, but preserved cAMP-dependent up-regulation. Cardiovasc. Res. 2014;104:216–225. PubMed
Szentandrássy N, et al. Role of action potential configuration and the contribution of Ca 2+ and K + currents to isoprenaline-induced changes in canine ventricular cells: Isoprenaline in canine heart. Br. J. Pharmacol. 2012;167:599–611. PubMed PMC
Ko YL, Tai DY, Chen SA, Lee-Chen GJ, Chu CH, Lin MW. Linkage and mutation analysis in two Taiwanese families with long QT syndrome. J. Formos. Med. Assoc. Taiwan Yi. Zhi. 2001;100:767–771. PubMed
Andrsova I, et al. Clinical characteristics of 30 Czech families with long QT syndrome and KCNQ1 and KCNH2 gene mutations: importance of exercise testing. J. Electrocardiol. 2012;45:746–751. PubMed
Bohnen MS, et al. Molecular pathophysiology of congenital long QT syndrome. Physiol. Rev. 2017;97:89–134. PubMed PMC
Steffensen AB, et al. IKs gain- and loss-of-function in early-onset lone atrial fibrillation. J. Cardiovasc. Electrophysiol. 2015;26:715–723. PubMed
Mousavi NA, Gharaie S, Jeong KH. Cellular mechanisms of mutations in Kv7.1: auditory functions in Jervell and Lange-Nielsen syndrome vs Romano-Ward syndrome. Front. Cell. Neurosci. 2015;9:32. doi: 10.3389/fncel.2015.00032. PubMed DOI PMC
Burgess DE, et al. High-risk long QT syndrome mutations in the Kv71 (KCNQ1) pore disrupt the molecular basis for rapid K+ Permeation. Biochemistry (Mosc). 2012;51:9076–9085. PubMed PMC
Ikrar T, et al. A double-point mutation in the selectivity filter site of the KCNQ1 potassium channel results in a severe phenotype, LQT1, of long QT syndrome. J. Cardiovasc. Electrophysiol. 2008;19:541–549. PubMed
Bianchi L, et al. Mechanisms of I(Ks) suppression in LQT1 mutants. Am. J. Physiol. Heart Circ. Physiol. 2000;279:H3003–H3011. PubMed
Li W, Du R, Wang Q-F, Tian L, Yang J-G, Song Z-F. The G314S KCNQ1 mutation exerts a dominant-negative effect on expression of KCNQ1 channels in oocytes. Biochem. Biophys. Res. Commun. 2009;383:206–209. PubMed
Aidery P, Kisselbach J, Schweizer PA, Becker R, Katus HA, Thomas D. Impaired ion channel function related to a common KCNQ1 mutation: implications for risk stratification in long QT syndrome 1. Gene. 2012;511:26–33. PubMed
Policarová M, Novotný T, Bébarová M. Impaired Adrenergic/Protein Kinase A Response of Slow Delayed Rectifier Potassium Channels as a Long QT Syndrome Motif: Importance and Unknowns. Can. J. Cardiol. 2019;35:511–522. PubMed
Winbo A, et al. Phenotype, origin and estimated prevalence of a common long QT syndrome mutation: a clinical, genealogical and molecular genetics study including Swedish R518X/KCNQ1 families. BMC Cardiovasc. Disord. 2014;14:22. doi: 10.1186/1471-2261-14-22. PubMed DOI PMC
Moretti A, et al. Patient-specific induced pluripotent stem cell models for long-QT syndrome. N. Engl. J. Med. 2010;363:1397–1409. PubMed
Sogo T, et al. Electrophysiological properties of iPS cell-derived cardiomyocytes from a patient with long QT syndrome type 1 harboring the novel mutation M437V of KCNQ1. Regen. Ther. 2016;4:9–17. PubMed PMC
Wang Z, et al. Pathogenic mechanism and gene correction for LQTS-causing double mutations in KCNQ1 using a pluripotent cell model. Stem Cell Res. 2019;38:101483. doi: 10.1016/j.scr.2019.101483. PubMed DOI
Liu GX, et al. Differential conditions for early after-depolarizations and triggered aktivity in cardiomyocytes derived from transgenic LQT1 and LQT2 rabbits. J. Physiol. 2012;590:1171–1180. PubMed PMC
Kim TY, et al. Complex excitation dynamics underlie polymorphic ventricular tachycardia in a transgenic rabbit model of long QT syndrome type 1. Heart Rhythm. 2015;12:220–228. PubMed PMC
ter Bekke RMA, et al. Proarrhythmic proclivity of left-stellate ganglion stimulation in a canine model of drug-induced long-QT syndrome type 1. Int. J. Cardiol. 2019;286:66–72. PubMed
Liu J, Laurita KR. The mechanism of pause-induced torsades de pointes in long QT syndrome. J. Cardiovasc. Electrophysiol. 2005;16:981–987. PubMed
Tan HL, et al. Genotype-specific onset of arrhythmias in congenital long-QT syndrome: possible therapy implications. Circulation. 2006;114:2096–2103. PubMed
Marban E, Robinson SW, Wier WG. Mechanisms of arrhythmogenic delayed and early afterdepolarizations in ferret ventricular muscle. J. Clin. Invest. 1986;78:1185–1192. PubMed PMC
Burashnikov A, Antzelevitch C. Block of I(Ks) does not induce early afterdepolarization activity but promotes beta-adrenergic agonist-induced delayed afterdepolarization activity. J. Cardiovasc. Electrophysiol. 2000;11:458–465. PubMed
Johnson DM, et al. Diastolic spontaneous calcium release from the sarcoplasmic reticulum increases beat-to-beat variability of repolarization in canine ventricular myocytes after β-adrenergic stimulation. Circ. Res. 2013;112:246–256. PubMed
Swan H, Laitinen P, Kontula K, Toivonen L. Calcium channel antagonism reduces exercise-induced ventricular arrhythmias in catecholaminergic polymorphic ventricular tachycardia patients with RyR2 mutations. J. Cardiovasc. Electrophysiol. 2005;16:162–166. PubMed
Shryock JC, Song Y, Rajamani S, Antzelevitch C, Belardinelli L. The arrhythmogenic consequences of increasing late INa in the cardiomyocytes. Cardiovasc. Res. 2013;99:600–611. PubMed PMC
Belardinelli L, et al. A novel, potent, and selective inhibitor of cardiac late sodium current suppresses experimental arrhythmias. J. Pharmacol. Exp. Ther. 2013;344:23–32. PubMed