Inward rectifying potassium currents resolved into components: modeling of complex drug actions
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
16-30571A
Ministerstvo Zdravotnictví Ceské Republiky - International
PubMed
28948353
DOI
10.1007/s00424-017-2071-2
PII: 10.1007/s00424-017-2071-2
Knihovny.cz E-resources
- Keywords
- Cardiomyocytes, Dual effect, Ethanol, I K1, Inward rectifier potassium currents, Quantitative model,
- MeSH
- Action Potentials * MeSH
- Allosteric Regulation MeSH
- Potassium Channels, Inwardly Rectifying chemistry metabolism MeSH
- Ethanol pharmacology MeSH
- Myocytes, Cardiac drug effects metabolism physiology MeSH
- Rats MeSH
- Models, Cardiovascular MeSH
- Protein Multimerization MeSH
- Ventricular Function MeSH
- Heart Ventricles cytology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Potassium Channels, Inwardly Rectifying MeSH
- Ethanol MeSH
Inward rectifier potassium currents (I Kir,x) belong to prominent ionic currents affecting both resting membrane voltage and action potential repolarization in cardiomyocytes. In existing integrative models of electrical activity of cardiac cells, they have been described as single current components. The proposed quantitative model complies with findings indicating that these channels are formed by various homomeric or heteromeric assemblies of channel subunits with specific functional properties. Each I Kir,x may be expressed as a total of independent currents via individual populations of identical channels, i.e., channels formed by the same combination of their subunits. Solution of the model equations simulated well recently observed unique manifestations of dual ethanol effect in rat ventricular and atrial cells. The model reflects reported occurrence of at least two binding sites for ethanol within I Kir,x channels related to slow allosteric conformation changes governing channel conductance and inducing current activation or inhibition. Our new model may considerably improve the existing models of cardiac cells by including the model equations proposed here in the particular case of the voltage-independent drug-channel interaction. Such improved integrative models may provide more precise and, thus, more physiologically relevant results.
See more in PubMed
Int J Mol Sci. 2013 Dec 13;14(12):24271-92 PubMed
J Physiol Pharmacol. 2014 Aug;65(4):497-509 PubMed
J Physiol. 2008 Apr 1;586(7):1833-48 PubMed
Eur Biophys J. 2012 Jun;41(6):491-503 PubMed
Am J Physiol Heart Circ Physiol. 2004 Sep;287(3):H1378-403 PubMed
Mol Pharmacol. 2001 Oct;60(4):700-11 PubMed
Eur J Pharmacol. 2011 Oct 1;668(1-2):72-7 PubMed
Pflugers Arch. 2011 Oct;462(4):505-17 PubMed
Prog Biophys Mol Biol. 2007 Jul;94(3):320-35 PubMed
Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):18309-14 PubMed
Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15631-6 PubMed
Biophys J. 2004 Sep;87(3):1507-25 PubMed
J Cardiovasc Pharmacol. 2008 Aug;52(2):129-35 PubMed
J Physiol Pharmacol. 2016 Jun;67(3):339-51 PubMed
Br J Clin Pharmacol. 2008 Nov;66(5):594-617 PubMed
J Physiol. 2001 Apr 1;532(Pt 1):115-26 PubMed
Cardiovasc Res. 2011 Mar 1;89(4):862-9 PubMed
Prog Biophys Mol Biol. 2008 Jan-Apr;96(1-3):258-80 PubMed
Am J Physiol Heart Circ Physiol. 2002 Jun;282(6):H2296-308 PubMed
Circulation. 1998 Dec 1;98(22):2422-8 PubMed
Prog Biophys Mol Biol. 2003 Jan;81(1):67-79 PubMed
Circ Res. 2004 May 28;94(10):1332-9 PubMed
Biochemistry. 2006 Jul 18;45(28):8599-606 PubMed
J Pharmacol Exp Ther. 2003 Oct;307(1):42-52 PubMed
Nature. 2011 Aug 28;477(7365):495-8 PubMed
J Physiol. 2007 Jul 15;582(Pt 2):675-93 PubMed
Physiol Rev. 2010 Jan;90(1):291-366 PubMed
Nat Neurosci. 2009 Aug;12(8):988-95 PubMed
J Physiol. 2003 Jul 15;550(Pt 2):365-72 PubMed
J Cardiovasc Pharmacol. 2012 Jan;59(1):37-48 PubMed
J Biol Chem. 2012 Dec 7;287(50):42278-87 PubMed
Cardiovasc Res. 2014 Nov 1;104(2):337-46 PubMed
Am J Physiol Heart Circ Physiol. 2004 Apr;286(4):H1573-89 PubMed
Prog Biophys Mol Biol. 2008 Jan-Apr;96(1-3):357-76 PubMed
Naunyn Schmiedebergs Arch Pharmacol. 2016 Oct;389(10 ):1049-58 PubMed
PLoS Comput Biol. 2012;8(10):e1002710 PubMed
J Gen Physiol. 2005 Dec;126(6):541-9 PubMed
PLoS Comput Biol. 2011 May;7(5):e1002061 PubMed
J Physiol. 2005 Mar 15;563(Pt 3):725-44 PubMed
EMBO J. 2007 Sep 5;26(17):4005-15 PubMed
Acta Physiol (Oxf). 2010 Dec;200(4):301-14 PubMed