Hyaluronidase of bloodsucking insects and its enhancing effect on leishmania infection in mice
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
18820742
PubMed Central
PMC2553483
DOI
10.1371/journal.pntd.0000294
Knihovny.cz E-zdroje
- MeSH
- Ceratopogonidae enzymologie parazitologie MeSH
- Diptera enzymologie MeSH
- hmyz - vektory MeSH
- hyaluronoglukosaminidasa genetika izolace a purifikace metabolismus MeSH
- kočky parazitologie MeSH
- leishmanióza patofyziologie přenos MeSH
- lidé MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- Phlebotomus enzymologie MeSH
- Simuliidae parazitologie MeSH
- slinné žlázy parazitologie MeSH
- sršňovití enzymologie parazitologie MeSH
- zvířata MeSH
- Check Tag
- kočky parazitologie MeSH
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hyaluronoglukosaminidasa MeSH
BACKGROUND: Salivary hyaluronidases have been described in a few bloodsucking arthropods. However, very little is known about the presence of this enzyme in various bloodsucking insects and no data are available on its effect on transmitted microorganisms. Here, we studied hyaluronidase activity in thirteen bloodsucking insects belonging to four different orders. In addition, we assessed the effect of hyaluronidase coinoculation on the outcome of Leishmania major infection in BALB/c mice. PRINCIPAL FINDINGS: High hyaluronidase activity was detected in several Diptera tested, namely deer fly Chrysops viduatus, blackflies Odagmia ornata and Eusimilium latipes, mosquito Culex quinquefasciatus, biting midge Culicoides kibunensis and sand fly Phlebotomus papatasi. Lower activity was detected in cat flea Ctenocephalides felis. No activity was found in kissing bug Rhodnius prolixus, mosquitoes Anopheles stephensi and Aedes aegypti, tse-tse fly Glossina fuscipes, stable fly Stomoxys calcitrans and human louse Pediculus humanus. Hyaluronidases of different insects vary substantially in their molecular weight, the structure of the molecule and the sensitivity to reducing conditions or sodium dodecyl sulphate. Hyaluronidase exacerbates skin lesions caused by Leishmania major; more severe lesions developed in mice where L. major promastigotes were coinjected with hyaluronidase. CONCLUSIONS: High hyaluronidase activities seem to be essential for insects with pool-feeding mode, where they facilitate the enlargement of the feeding lesion and serve as a spreading factor for other pharmacologically active compounds present in saliva. As this enzyme is present in all Phlebotomus and Lutzomyia species studied to date, it seems to be one of the factors responsible for enhancing activity present in sand fly saliva. We propose that salivary hyaluronidase may facilitate the spread of other vector-borne microorganisms, especially those transmitted by insects with high hyaluronidase activity, namely blackflies (Simuliidae), biting midges (Ceratopogonidae) and horse flies (Tabanidae).
Zobrazit více v PubMed
Stern R, Jedrzejas MJ. Hyaluronidases: Their genomics, structures, and mechanisms of action. Chem Rev. 2006;106:818–839. PubMed PMC
Markovic-Housley Z, Miglierini G, Soldatova L, Rizkallah PJ, Muller U, et al. Crystal structure of hyaluronidase, a major allergen of bee venom. Structure. 2000;8:1025–1035. PubMed
Bilo BM, Rueff F, Mosbech H, Bonifazi F, Oude-Elberink JNG. Diagnosis of Hymenoptera venom allergy. Allergy. 2005;60:1339–1349. PubMed
King TP, Lu G, Gonzalez M, Qian NF, Soldatova L. Yellow jacket venom allergens, hyaluronidase and phospholipase: Sequence similarity and antigenic cross-reactivity with their hornet and wasp homologs and possible implications for clinical allergy. J Allergy Clin Immun. 1996;98:588–600. PubMed
Charlab R, Valenzuela JG, Rowton ED, Ribeiro JMC. Toward an understanding of the biochemical and pharmacological complexity of the saliva of a hematophagous sand fly Lutzomyia longipalpis. Proc Natl Acad Sci U S A. 1999;96:15155–15160. PubMed PMC
Ribeiro JMC, Charlab R, Pham VM, Garfield M, Valenzuela JG. An insight into the salivary transcriptome and proteome of the adult female mosquito Culex pipiens quinquefasciatus. Insect Biochem Molec. 2004;34:543–563. PubMed
Campbell CL, Vandyke KA, Letchworth GJ, Drolet BS, Hanekamp T, et al. Midgut and salivary gland transcriptomes of the arbovirus vector Culicoides sonorensis (Diptera: Ceratopogonidae). Insect Mol Biol. 2005;14:121–136. PubMed
Xu X, Yang H, Ma D, Wu J, Wang Y, et al. Toward an understanding of the molecular mechanism for successfully blood-feeding by proteomics analysis coupling with pharmacological testing of horse fly salivary glands. Mol Cell Proteomics. 2008;7:582–590. PubMed
Ribeiro JMC, Charlab R, Rowton ED, Cupp EW. Simulium vittatum (Diptera: Simuliidae) and Lutzomyia longipalpis (Diptera: Psychodidae) salivary gland hyaluronidase activity. J Med Entomol. 2000;37:743–747. PubMed
Cerna P, Mikes L, Volf P. Salivary gland hyaluronidase in various species of phlebotomine sand flies (Diptera: Psychodidae). Insect Biochem Mol Biol. 2002;32:1691–1697. PubMed
Kreil G. Hyaluronidases – a group of neglected enzymes. Protein Sci. 1995;4:1666–1669. PubMed PMC
Mummert ME. Immunologic roles of hyaluronan. Immunol Res. 2005;31:189–205. PubMed
Titus RG, Ribeiro JMC. Salivary-gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. Science. 1988;239:1306–1308. PubMed
Sacks D, Kamhawi S. Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis. Annu Rev Microbiol. 2001;55:453–483. PubMed
Rohousova I, Volf P. Sand fly saliva: effects on host immune response and Leishmania transmission. Folia Parasitol (Praha) 2006;53:161–171. PubMed
Morris RV, Shoemaker CB, David JR, Lanzaro GC, Titus RG. Sandfly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. major infection. J Immunol. 2001;167:5226–5230. PubMed
Qureshi AA, Asahina A, Ohnuma M, Tajima M, Granstein RD, et al. Immunomodulatory properties of maxadilan, the vasodilator peptide from sand fly salivary gland extracts. Am J Trop Med Hyg. 1996;54:665–671. PubMed
Rogers KA, Titus RG. Immunomodulatory effects of maxadilan and Phlebotomus papatasi sand fly salivary gland lysates on human primary in vitro immune responses. Parasite Immunol. 2003;25:127–134. PubMed
Belkaid Y, Kamhawi S, Modi G, Valenzuela J, Noben-Trauth N, et al. Development of a natural model of cutaneous leishmaniasis: Powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J Exp Med. 1998;188:1941–1953. PubMed PMC
Kamhawi S, Belkaid Y, Modi G, Rowton E, Sacks D. Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science. 2000;290:1351–1354. PubMed
Ribeiro JMC, Katz O, Pannell LK, Waitumbi J, Warburg A. Salivary glands of the sand fly Phlebotomus papatasi contain pharmacologically active amounts of adenosine and 5 ′-AMP. J Exp Biol. 1999;202:1551–1559. PubMed
StatSoft I. STATISTICA (data analysis software system), version 7.1. 2006. www.statsoft.com.
Svobodova M, Votypka J, Nicolas L, Volf P. Leishmania tropica in the black rat (Rattus rattus): persistence and transmission from asymptomatic host to sand fly vector Phlebotomus sergenti. Microbes Infect. 2003;5:361–364. PubMed
Mary C, Faraut F, Lascombe L, Dumon H. Quantification of Leishmania infantum DNA by a real-time PCR assay with high sensitivity. J Clin Microbiol. 2004;42:5249–5255. PubMed PMC
Stern R. Devising a pathway for hyaluronan catabolism: are we there yet? Glycobiology. 2003;13:105R–115R. PubMed
Calvo E, Andersen J, Francischetti IM, deL Capurro M, deBianchi AG, et al. The transcriptome of adult female Anopheles darlingi salivary glands. Insect Mol Biol. 2004;13:73–88. PubMed
Calvo E, Dao A, Pham VM, Ribeiro JMC. An insight into the sialome of Anopheles funestus reveals an emerging pattern in anopheline salivary protein families. Insect Biochem Mol Biol. 2007;37:164–175. PubMed PMC
Arca B, Lombardo F, Valenzuela JG, Francischetti IMB, Marinotti O, et al. An updated catalogue of salivary gland transcripts in the adult female mosquito, Anopheles gambiae. J Exp Biol. 2005;208:3971–3986. PubMed
Ribeiro JMC, Arca B, Lombardo F, Calvo E, Pham VM, et al. An annotated catalogue of salivary gland transcripts in the adult female mosquito, Aedes aegypti. BMC Genomics. 2007;8:6. PubMed PMC
Arca B, Lombardo F, Francischetti IMB, Pham VM, Mestres-Simon M, et al. An insight into the sialome of the adult female mosquito Aedes albopictus. Insect Biochem Mol Biol. 2007;37:107–127. PubMed
Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, et al. The genome sequence of the malaria mosquito Anopheles gambiae. Science. 2002;298:129–149. PubMed
Nene V, Wortman JR, Lawson D, Haas B, Kodira C, et al. Genome sequence of Aedes aegypti, a major arbovirus vector. Science. 2007;316:1718–1723. PubMed PMC
Freye HB, Litwin C. Coexistent anaphylaxis to diptera and hymenoptera. Ann Allergy Asthma Immunol. 1996;76:270–272. PubMed
Sabbah A, Hassoun S, Drouet M, Lauret MG, Doucet M. Le syndrome guepe/moustique. Allerg Immunol (Paris) 1999;31:175–184. PubMed
Sabbah A, Hassoun S, Drouet M, Lauret MG, Doucet M. Le syndrome guepe/moustique: extension de l'allergénicité croisée au taon. Allerg Immunol (Paris) 2000;32:16–19. PubMed
McKee CM, Penno MB, Cowman M, Burdick MD, Strieter RM, et al. Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages – The role of HA size and CD44. J Clin Invest. 1996;98:2403–2413. PubMed PMC
Uchiyama H, Dobashi Y, Ohkouchi K, Nagasawa K. Chemical-change involved in the oxidative reductive depolymerization of hyaluronic-acid. J Biol Chem. 1990;265:7753–7759. PubMed
Taylor KR, Trowbridge JM, Rudisill JA, Termeer CC, Simon JC, et al. Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. J Biol Chem. 2004;279:17079–17084. PubMed
Taylor KR, Gallo RL. Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation. Faseb J. 2006;20:9–22. PubMed
Matzinger P. The danger model: A renewed sense of self. Science. 2002;296:301–305. PubMed
Laskay T, van Zandbergen G, Solbach W. Neutrophil granulocytes – Trojan horses for Leishmania major and other intracellular microbes? Trends Microbiol. 2003;11:210–214. PubMed
Hyaluronidase Activity in Saliva of European Culicoides (Diptera: Ceratopogonidae)
Analysis of salivary transcripts and antigens of the sand fly Phlebotomus arabicus