Human immune response against salivary antigens of Simulium damnosum s.l.: A new epidemiological marker for exposure to blackfly bites in onchocerciasis endemic areas
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/R005362/1
Biotechnology and Biological Sciences Research Council - United Kingdom
MR/R015600/1
Medical Research Council - United Kingdom
PubMed
34157020
PubMed Central
PMC8253393
DOI
10.1371/journal.pntd.0009512
PII: PNTD-D-20-02090
Knihovny.cz E-zdroje
- MeSH
- dítě MeSH
- dospělí MeSH
- ELISA MeSH
- hmyz - vektory fyziologie MeSH
- imunoglobulin G krev MeSH
- imunoglobulin M krev MeSH
- kousnutí a bodnutí hmyzem epidemiologie imunologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- onchocerkóza MeSH
- předškolní dítě MeSH
- senioři MeSH
- Simuliidae fyziologie MeSH
- sliny * MeSH
- zvířata MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- senioři MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Ghana MeSH
- Súdán MeSH
- Názvy látek
- imunoglobulin G MeSH
- imunoglobulin M MeSH
BACKGROUND: Simulium damnosum sensu lato (s.l.) blackflies transmit Onchocerca volvulus, a filarial nematode that causes human onchocerciasis. Human landing catches (HLCs) is currently the sole method used to estimate blackfly biting rates but is labour-intensive and questionable on ethical grounds. A potential alternative is to measure host antibodies to vector saliva deposited during bloodfeeding. In this study, immunoassays to quantify human antibody responses to S. damnosum s.l. saliva were developed, and the salivary proteome of S. damnosum s.l. was investigated. METHODOLOGY/PRINCIPAL FINDINGS: Blood samples from people living in onchocerciasis-endemic areas in Ghana were collected during the wet season; samples from people living in Accra, a blackfly-free area, were considered negative controls and compared to samples from blackfly-free locations in Sudan. Blackflies were collected by HLCs and dissected to extract their salivary glands. An ELISA measuring anti-S. damnosum s.l. salivary IgG and IgM was optimized and used to quantify the humoral immune response of 958 individuals. Both immunoassays differentiated negative controls from endemic participants. Salivary proteins were separated by gel-electrophoresis, and antigenic proteins visualized by immunoblot. Liquid chromatography mass spectrometry (LC-MS/MS) was performed to characterize the proteome of S. damnosum s.l. salivary glands. Several antigenic proteins were recognized, with the major ones located around 15 and 40 kDa. LC-MS/MS identified the presence of antigen 5-related protein, apyrase/nucleotidase, and hyaluronidase. CONCLUSIONS/SIGNIFICANCE: This study validated for the first time human immunoassays that quantify humoral immune responses as potential markers of exposure to blackfly bites. These assays have the potential to facilitate understanding patterns of exposure as well as evaluating the impact of vector control on biting rates. Future studies need to investigate seasonal fluctuations of these antibody responses, potential cross-reactions with other bloodsucking arthropods, and thoroughly identify the most immunogenic proteins.
Biomedical and Public Health Research Unit CSIR Water Research Institute Accra Ghana
Commission for Biotechnology and Genetic Engineering National Centre for Research Khartoum Sudan
Department of Parasitology Faculty of Science Charles University Prague Czech Republic
Zobrazit více v PubMed
Colebunders R, Basáñez MG, Siling K, Post RJ, Rotsaert A, Mmbando B, et al.. From river blindness control to elimination: bridge over troubled water. Infect Dis Poverty. 2018;7: 1–15. doi: 10.1186/s40249-017-0384-1 PubMed DOI PMC
Adler PH, Cheke RA, Post RJ. Evolution, epidemiology, and population genetics of black flies (Diptera: Simuliidae). Infect Genet Evol. 2010;10: 846–865. doi: 10.1016/j.meegid.2010.07.003 PubMed DOI
Basáñez MG, Churcher TS, Grillet ME. Chapter 11 Onchocerca-Simulium interactions and the population and evolutionary biology of Onchocerca volvulus. Adv Parasitol. 2009;68: 263–313. doi: 10.1016/S0065-308X(08)00611-8 PubMed DOI
World Health Organization. Ending the neglect to attain the Sustainable Development Goals–A road map for neglected tropical diseases 2021–2030 [Internet]. Geneva: World Health Organization. 2020. Available: https://www.who.int/neglected_diseases/Ending-the-neglect-to-attain-the-SDGs—NTD-Roadmap.pdf?ua=1.
NTD Modelling Consortium Onchocerciasis Group. The World Health Organization 2030 goals for onchocerciasis: Insights and perspectives from mathematical modelling. Gates Open Res. 2019;3: 1–16. doi: 10.12688/gatesopenres.12862.3 PubMed DOI PMC
Walker M, Stolk WA, Dixon MA, Bottomley C, Diawara L, Traoré MO, et al.. Modelling the elimination of river blindness using long-term epidemiological and programmatic data from Mali and Senegal. Epidemics. 2017;18: 4–15. doi: 10.1016/j.epidem.2017.02.005 PubMed DOI PMC
Hamley JID, Milton P, Walker M, Basáñez MG. Modelling exposure heterogeneity and density dependence in onchocerciasis using a novel individual-based transmission model, EPIONCHO-IBM: Implications for elimination and data needs. PLoS Negl Trop Dis. 2019;13: 1–21. doi: 10.1371/journal.pntd.0007557 PubMed DOI PMC
Hamley JID, Walker M, Coffeng LE, Milton P, de Vlas SJ, Stolk WA, et al.. Structural Uncertainty in Onchocerciasis Transmission Models Influences the Estimation of Elimination Thresholds and Selection of Age Groups for Seromonitoring. J Infect Dis. 2020;221: S510–S518. doi: 10.1093/infdis/jiz674 PubMed DOI PMC
Winnen M, Plaisier AP, Alley ES, Nagelkerke NJD, Van Oortmarssen G, Boatin BA, et al.. Can ivermectin mass treatments eliminate onchocerciasis in Africa? Bull World Health Organ. 2002;80: 384–390. doi: 10.1590/S0042-96862002000500009 PubMed DOI PMC
Walsh JF, Davies JB, Le Berre R, Garms R. Standardization of criteria for assessing the effect of Simulium control in onchocerciasis control programmes. Trans R Soc Trop Med Hyg. 1978;72: 675–676. doi: 10.1016/0035-9203(78)90039-1 PubMed DOI
Jacobi CA, Enyong P, Renz A. Individual exposure to Simulium bites and intensity of Onchocerca volvulus infection. Parasit Vectors. 2010;3: 53. doi: 10.1186/1756-3305-3-53 PubMed DOI PMC
Routledge I, Walker M, Cheke RA, Bhatt S, Nkot PB, Matthews GA, et al.. Modelling the impact of larviciding on the population dynamics and biting rates of Simulium damnosum (s.l.): Implications for vector control as a complementary strategy for onchocerciasis elimination in Africa. Parasit Vectors. 2018;11: 1–16. doi: 10.1186/s13071-017-2573-y PubMed DOI PMC
Jacob BG, Loum D, Lakwo TL, Katholi CR, Habomugisha P, Byamukama E, et al.. Community-directed vector control to supplement mass drug distribution for onchocerciasis elimination in the Madi mid-North focus of Northern Uganda. PLoS Negl Trop Dis. 2018;12. doi: 10.1371/journal.pntd.0006702 PubMed DOI PMC
Loum D, Cozart D, Lakwo T, Habomugisha P, Jacob B, Cupp EW, et al.. Optimization and evaluation of the Esperanza Window Trap to reduce biting rates of Simulium damnosum sensu lato in Northern Uganda. PLoS Negl Trop Dis. 2019;13: 1–17. doi: 10.1371/journal.pntd.0007558 PubMed DOI PMC
Quinnell RJ, Soremekun S, Bates PA, Rogers ME, Garcez LM, Courtenay O. Antibody response to sand fly saliva is a marker of transmission intensity but not disease progression in dogs naturally infected with Leishmania infantum. Parasit Vectors. 2018;11: 1–12. doi: 10.1186/s13071-017-2573-y PubMed DOI PMC
Clements MF, Gidwani K, Kumar R, Hostomska J, Dinesh DS, Kumar V, et al.. Measurement of recent exposure to Phlebotomus argentipes, the vector of indian visceral leishmaniasis, by using human antibody responses to sand fly saliva. Am J Trop Med Hyg. 2010;82: 801–807. doi: 10.4269/ajtmh.2010.09-0336 PubMed DOI PMC
Ribeiro JMC, Francischetti IMB. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol. 2003;48: 73–88. doi: 10.1146/annurev.ento.48.060402.102812 PubMed DOI
Drame PM, Poinsignon A, Besnard P, Le Mire J, Dos-Santos MA, Sow CS, et al.. Human antibody response to Anopheles gambiae saliva: An immuno-epidemiological biomarker to evaluate the efficacy of insecticide-treated nets in malaria vector control. Am J Trop Med Hyg. 2010;83: 115–121. doi: 10.4269/ajtmh.2010.09-0684 PubMed DOI PMC
Dama E, Cornelie S, Bienvenu Somda M, Camara M, Kambire R, Courtin F, et al.. Identification of Glossina palpalis gambiensis specific salivary antigens: Towards the development of a serologic biomarker of human exposure to tsetse flies in West Africa. Microbes Infect. 2013;15: 416–427. doi: 10.1016/j.micinf.2013.03.001 PubMed DOI
Schwarz A, Helling S, Collin N, Teixeira CR, Medrano-Mercado N, Hume JCC, et al.. Immunogenic salivary proteins of Triatoma infestans: Development of a recombinant antigen for the detection of low-level infestation of triatomines. PLoS Negl Trop Dis. 2009;3. doi: 10.1371/journal.pntd.0000532 PubMed DOI PMC
Willen L, Lestinova T, Kalouskova B, Sumova P, Spitzova T, Velez R, et al.. Field study of the improved rapid sand fly exposure test in areas endemic for canine leishmaniasis. PLoS Negl Trop Dis. 2019;13: e0007832. doi: 10.1371/journal.pntd.0007832 PubMed DOI PMC
Cross ML, Cupp MS, Cupp EW, Galloway AL, Enriquez FJ. Modulation of murine immunological responses by salivary gland extract of Simulium vittatum (Diptera: Simuliidae). J Med Entomol. 1993;30: 928–935. doi: 10.1093/jmedent/30.5.928 PubMed DOI
Cross ML, Cupp MS, Cupp EW, Ramberg FB, Enriquez FJ. Antibody Responses of BALB/c mice to salivary antigens of hematophagous black flies (Diptera: Simuliidae). J Med Entomol. 1993;30: 725–734. doi: 10.1093/jmedent/30.4.725 PubMed DOI
Hellberg W, Mellor PS, Torsteinsdottir S, Marti E. Insect bite hypersensitivity in the horse: Comparison of IgE-binding proteins in salivary gland extracts from Simulium vittatum and Culicoides nubeculosus. Vet Immunol Immunopathol. 2009;132: 62–67. doi: 10.1016/j.vetimm.2009.09.016 PubMed DOI
Hempolchom C, Sookrung N, Srisuka W, Reamtong O, Sakolvaree Y, Chaicumpa W, et al.. Characterization of IgE-binding proteins in the salivary glands of Simulium nigrogilvum (Diptera: Simuliidae). Parasitol Res. 2019;118: 2353–2359. doi: 10.1007/s00436-019-06383-x PubMed DOI
Hougard J-M, Alley ES, Yaméogo L, Dadzie KY, Boatin BA. Eliminating onchocerciasis after 14 Years of vector control: A proved strategy. J Infect Dis. 2001;184: 497–503. doi: 10.1086/322789 PubMed DOI
Alley ES, Plaisier AP, Boatin BA, Dadzie KY, Remme J, Zerbo G, et al.. The impact of five years of annual ivermectin treatment on skin microfilarial loads in the onchocerciasis focus of Asubende, Ghana. Trans R Soc Trop Med Hyg. 1994;88: 581–584. doi: 10.1016/0035-9203(94)90172-4 PubMed DOI
Post RJ, Cheke RA, Boakye DA, Wilson MD, Osei-Atweneboana MY, Tetteh-Kumah A, et al.. Stability and change in the distribution of cytospecies of the Simulium damnosum complex (Diptera: Simuliidae) in southern Ghana from 1971 to 2011. Parasit Vectors. 2013;6: 1–11. doi: 10.1186/1756-3305-6-1 PubMed DOI PMC
Lamberton PHL, Cheke RA, Walker M, Winskill P, Osei-Atweneboana MY, Tirados I, et al.. Onchocerciasis transmission in Ghana: Biting and parous rates of host-seeking sibling species of the Simulium damnosum complex. Parasit Vectors. 2014;7:511. doi: 10.1186/s13071-014-0511-9 PubMed DOI PMC
Lamberton PHL, Cheke RA, Winskill P, Tirados I, Walker M, Osei-Atweneboana MY, et al.. Onchocerciasis transmission in Ghana: Persistence under different control strategies and the role of the simuliid vectors. PLoS Negl Trop Dis. 2015;9: 1–27. doi: 10.1371/journal.pntd.0003688 PubMed DOI PMC
Cheke RA, Basanez M, Perry M, White MT, Garms R, Obuobie E, et al.. Potential effects of warmer worms and vectors on onchocerciasis transmission in West Africa. Philos Trans R Soc B. 2015;370: 20130559. doi: 10.1098/rstb.2013.0559 PubMed DOI PMC
Plaisier AP, van Oortmarssen GJ, Habbema JDF, Remme J, Alley ES. ONCHOSIM: a model and computer simulation program for the transmission and control of onchocerciasis. Comput Methods Programs Biomed. 1990;31: 43–56. doi: 10.1016/0169-2607(90)90030-d PubMed DOI
Basáñez MG, Walker M, Turner HC, Coffeng LE, de Vlas SJ, Stolk WA. River Blindness: Mathematical Models for Control and Elimination. Adv Parasitol. 2016;94: 247–341. doi: 10.1016/bs.apar.2016.08.003 PubMed DOI
Frempong KK, Walker M, Cheke RA, Tetevi EJ, Gyan ET, Owusu EO, et al.. Does increasing treatment frequency address suboptimal responses to ivermectin for the control and elimination of river blindness? Clin Infect Dis. 2016;62: 1338–1347. doi: 10.1093/cid/ciw144 PubMed DOI PMC
Turner HC, Osei-Atweneboana MY, Walker M, Tettevi EJ, Churcher TS, Asiedu O, et al.. The cost of annual versus biannual community-directed treatment of onchocerciasis with ivermectin: Ghana as a case study. PLoS Negl Trop Dis. 2013;7: e2452. doi: 10.1371/journal.pntd.0002452 PubMed DOI PMC
Sumova P, Sima M, Spitzova T, Osman ME, Guimaraes-Costa AB, Oliveira F, et al.. Human antibody reaction against recombinant salivary proteins of Phlebotomus orientalis in Eastern Africa. PLoS Negl Trop Dis. 2018;12: e0006981. doi: 10.1371/journal.pntd.0006981 PubMed DOI PMC
Veriegh FBD. Impacts of semi-annual ivermectin treatment and the spatio-temporal distribution and abundance of Simulium damnosum sensu lato vectors on the transmission of Onchocerca volvulus. PhD thesis, Kwame Nkrumah University of Science and Technology (KNUST). 2020.
Tang J, Toe L, Back C, Zimmerman P, Pruess K, Unnasch T. The Simulium damnosum species complex: phylogenetic analysis and molecular identification based upon mitochondrially encoded gene sequences. Insect Mol Biol. 1995;4: 79–88. doi: 10.1111/j.1365-2583.1995.tb00011.x PubMed DOI
Hall T. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 1999;41: 95–98.
R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [Internet]. Available: https://www.r-project.org/
Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag; New York, 2009.
Hebert AS, Richards AL, Bailey DJ, Ulbrich A, Coughlin EE, Westphall MS, et al.. The one hour yeast proteome. Molecular and Cellular Proteomics. 2014;13: 339–347. doi: 10.1074/mcp.M113.034769 PubMed DOI PMC
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics. 2014;13: 2513–2526. doi: 10.1074/mcp.M113.031591 PubMed DOI PMC
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al.. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13: 731–740. doi: 10.1038/nmeth.3901 PubMed DOI
Oforka L, Adeleke M, Anikwe J, Hardy N, Mathias D, Makanjuola W, et al.. Poor genetic differentiation but clear cytoform divergence among cryptic species in Simulium damnosum complex (Diptera: Simuliidae). Syst Entomol. 2018;43: 123–135. doi: 10.1111/syen.12256 DOI
Kostalova T, Lestinova T, Sumova P, Vlkova M, Rohousova I, Berriatua E, et al.. Canine antibodies against salivary recombinant proteins of Phlebotomus perniciosus: A longitudinal study in an endemic focus of canine leishmaniasis. PLoS Negl Trop Dis. 2015;9: e0003855. doi: 10.1371/journal.pntd.0003855 PubMed DOI PMC
Elanga Ndille E, Doucoure S, Damien G, Mouchet F, Drame PM, Cornelie S, et al.. First attempt to validate human IgG antibody response to Nterm-34kDa salivary peptide as biomarker for evaluating exposure to Aedes aegypti bites. PLoS Negl Trop Dis. 2012;6: e1905. doi: 10.1371/journal.pntd.0001905 PubMed DOI PMC
Orlandi-Pradines E, Almeras L, Denis de Senneville L, Barbe S, Remoué F, Villard C, et al.. Antibody response against saliva antigens of Anopheles gambiae and Aedes aegypti in travellers in tropical Africa. Microbes Infect. 2007;9: 1454–1462. doi: 10.1016/j.micinf.2007.07.012 PubMed DOI
Dorňáková V, Salazar-Sanchez R, Borrini-Mayori K, Carrion-Navarro O, Levy MZ, Schaub GA, et al.. Characterization of guinea pig antibody responses to salivary proteins of Triatoma infestans for the development of a triatomine exposure marker. PLoS Negl Trop Dis. 2014;8: e2783. doi: 10.1371/journal.pntd.0002783 PubMed DOI PMC
Schaffartzik A, Marti E, Crameri R, Rhyner C. Cloning, production and characterization of antigen 5 like proteins from Simulium vittatum and Culicoides nubeculosus, the first cross-reactive allergen associated with equine insect bite hypersensitivity. Vet Immunol Immunopathol. 2010;137: 76–83. doi: 10.1016/j.vetimm.2010.04.012 PubMed DOI
Lestinova T, Vlkova M, Votypka J, Volf P, Rohousova I. Phlebotomus papatasi exposure cross-protects mice against Leishmania major co-inoculated with Phlebotomus duboscqi salivary gland homogenate. Acta Trop. 2015;144: 9–18. doi: 10.1016/j.actatropica.2015.01.005 PubMed DOI
Rizzo C, Ronca R, Fiorentino G, Mangano VD, Sirima SB, Nèbiè I, et al.. Wide cross-reactivity between Anopheles gambiae and Anopheles funestus SG6 salivary proteins supports exploitation of gSG6 as a marker of human exposure to major malaria vectors in tropical Africa. Malar J. 2011;10: 1–10. doi: 10.1186/1475-2875-10-1 PubMed DOI PMC
Andersen JF, Pham M Van, Meng Z, Champagne DE, Ribeiro JMC. Insight into the sialome of the black fly, Simulium vittatum. J Proteome Res. 2009;8: 1474–1488. doi: 10.1021/pr8008429 PubMed DOI PMC
Botto C, Villamizar NJ, Jokić Z, Noya-Alarcón O, Cortés J, Escalona M, et al.. Landscape epidemiology of human onchocerciasis in southern venezuela. In: Nriagu J(Ed). Encyclopedia of Environmental Health. 2019; 13–32 (Elsevier). doi: 10.1016/B978-0-12-409548-9.01790–5 DOI
Ribeiro JMC, Valenzuela JG, Pham VM, Kleeman L, Barbian KD, Favreau AJ, et al.. An insight into the sialotranscriptome of Simulium nigrimanum, a black fly associated with fogo selvagem in South America. Am J Trop Med Hyg. 2010;82: 1060–1075. doi: 10.4269/ajtmh.2010.09-0769 PubMed DOI PMC
Chagas AC, Calvo E, Pimenta PFP, Ribeiro JMC. An insight into the sialome of Simulium guianense (Diptera: Simuliidae), the main vector of river blindness disease in Brazil. BMC Genomics. 2011;12: 612. doi: 10.1186/1471-2164-12-612 PubMed DOI PMC
Mattah PAD, Futagbi G, Amekudzi LK, Mattah MM, De Souza DK, Kartey-Attipoe WD, et al.. Diversity in breeding sites and distribution of Anopheles mosquitoes in selected urban areas of southern Ghana. Parasit Vectors. 2017;10: 25. doi: 10.1186/s13071-016-1941-3 PubMed DOI PMC
Schaffartzik A, Weichel M, Crameri R, Björnsdóttir TS, Prisi C, Rhyner C, et al.. Cloning of IgE-binding proteins from Simulium vittatum and their potential significance as allergens for equine insect bite hypersensitivity. Vet Immunol Immunopathol. 2009;132: 68–77. doi: 10.1016/j.vetimm.2009.09.017 PubMed DOI
Cupp M, Cupp E, Ochoa-a J, Moulton J. Salivary apyrase in New World blackflies (Diptera: Simuliidae) and its relationship to onchocerciasis vector status. Med Vet Entomol. 1995;9: 325–330. doi: 10.1111/j.1365-2915.1995.tb00141.x PubMed DOI
Cupp MS, Ramberg FB, Cupp EW. Salivary apyrase in African and New World vectors of Plasmodium species and its relationship to malaria transmission. Am J Trop Med Hyg. 1994;50: 235–240. doi: 10.4269/ajtmh.1994.50.235 PubMed DOI
Peng Z, Simons FER. Mosquito allergy: Immune mechanisms and recombinant salivary allergens. Int Arch Allergy Immunol. 2004;133: 198–209. doi: 10.1159/000076787 PubMed DOI
Volfova V, Tothova V, Volf P. Hyaluronidase activity in the salivary glands of tabanid flies. Insect Biochem Mol Biol. 2016;73: 38–46. doi: 10.1016/j.ibmb.2016.03.007 PubMed DOI
Rádrová J, Vlková M, Volfová V, Sumová P, Cêtre-Sossah C, Carpenter S, et al.. Hyaluronidase activity in saliva of European Culicoides (Diptera: Ceratopogonidae). J Med Entomol. 2016;53: 212–216. doi: 10.1093/jme/tjv147 PubMed DOI PMC
Ribeiro JMC, Charlab R, Rowton ED. Simulium vittatum (Diptera: Simuliidae) and Lutzomyia longipalpis (Diptera: Psychodidae) salivary gland hyaluronidase activity. J Med Entomol. 2000;37: 743–747. doi: 10.1603/0022-2585-37.5.743 PubMed DOI
Volfova V, Hostomska J, Cerny M, Votypka J, Volf P. Hyaluronidase of bloodsucking insects and its enhancing effect on Leishmania infection in mice. PLoS Negl Trop Dis. 2008;2: e294. doi: 10.1371/journal.pntd.0000294 PubMed DOI PMC
Mead DG, Ramberg FB, Besselsen DG, Maré CJ. Transmission of vesicular stomatitis virus from infected to noninfected black flies co-feeding on nonviremic deer mice. Science. 2000;287: 485–487. doi: 10.1126/science.287.5452.485 PubMed DOI