Demographic patterns of human antibody levels to Simulium damnosum s.l. saliva in onchocerciasis-endemic areas: An indicator of exposure to vector bites

. 2022 Jan ; 16 (1) : e0010108. [epub] 20220112

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35020729

Grantová podpora
Wellcome Trust - United Kingdom
MR/R015600/1 Medical Research Council - United Kingdom

BACKGROUND: In onchocerciasis endemic areas in Africa, heterogenous biting rates by blackfly vectors on humans are assumed to partially explain age- and sex-dependent infection patterns with Onchocerca volvulus. To underpin these assumptions and further improve predictions made by onchocerciasis transmission models, demographic patterns in antibody responses to salivary antigens of Simulium damnosum s.l. are evaluated as a measure of blackfly exposure. METHODOLOGY/PRINCIPAL FINDINGS: Recently developed IgG and IgM anti-saliva immunoassays for S. damnosum s.l. were applied to blood samples collected from residents in four onchocerciasis endemic villages in Ghana. Demographic patterns in antibody levels according to village, sex and age were explored by fitting generalized linear models. Antibody levels varied between villages but showed consistent patterns with age and sex. Both IgG and IgM responses declined with increasing age. IgG responses were generally lower in males than in females and exhibited a steeper decline in adult males than in adult females. No sex-specific difference was observed in IgM responses. CONCLUSIONS/SIGNIFICANCE: The decline in age-specific antibody patterns suggested development of immunotolerance or desensitization to blackfly saliva antigen in response to persistent exposure. The variation between sexes, and between adults and youngsters may reflect differences in behaviour influencing cumulative exposure. These measures of antibody acquisition and decay could be incorporated into onchocerciasis transmission models towards informing onchocerciasis control, elimination, and surveillance.

Zobrazit více v PubMed

World Health Organization. Department of Control of Neglected Tropical Diseases. Ending the neglect to attain the Sustainable Development Goals–A road map for neglected tropical diseases 2021–2030. Geneva World Health Organization. 2021. (Editor: Malecele MN). Available: https://www.who.int/publications/i/item/9789240010352 (accessed 11 December 2021).

Hamley JID, Milton P, Walker M, Basáñez MG. Modelling exposure heterogeneity and density dependence in onchocerciasis using a novel individual-based transmission model, EPIONCHO-IBM: Implications for elimination and data needs. PLoS Negl Trop Dis. 2019;13: 1–21. doi: 10.1371/journal.pntd.0007557 PubMed DOI PMC

Walker M, Stolk WA, Dixon MA, Bottomley C, Diawara L, Traoré MO, et al.. Modelling the elimination of river blindness using long-term epidemiological and programmatic data from Mali and Senegal. Epidemics. 2017;18: 4–15. doi: 10.1016/j.epidem.2017.02.005 PubMed DOI PMC

Hamley JID, Walker M, Coffeng LE, Milton P, de Vlas SJ, Stolk WA, et al.. Structural uncertainty in onchocerciasis transmission models influences the estimation of elimination thresholds and selection of age groups for seromonitoring. J Infect Dis. 2020;221: S510–S518. doi: 10.1093/infdis/jiz674 PubMed DOI PMC

Filipe JAN, Boussinesq M, Renz A, Collins RC, Vivas-Martinez S, Grillet ME, et al.. Human infection patterns and heterogeneous exposure in river blindness. Proc Natl Acad Sci USA. 2005;102: 15265–15270. doi: 10.1073/pnas.0502659102 PubMed DOI PMC

Otabil KB, Gyasi SF, Awuah E, Obeng-Ofori D, Rodríguez-Pérez MA, Katholi CR, et al.. The search for an efficient black fly trap for xenomonitoring of onchocerciasis. J Parasitol Res. 2018;2018: 1–10. doi: 10.1155/2018/5902367 PubMed DOI PMC

Renz A, Wenk P. Studies on the dynamics of transmission of onchocerciasis in a Sudan-savanna area of North Cameroon IV. The different exposure to Simulium bites and transmission of boys and girls and men and women, and the resulting manifestations of onchocerciasis. Ann Trop Med Parasitol. 1987;81: 215–228. doi: 10.1080/00034983.1987.11812115 PubMed DOI

Talom BAD, Enyong P, Cheke RA, Djouaka R, Hawkes FM. Capture of high numbers of Simulium vectors can be achieved with Host Decoy Traps to support data acquisition in the onchocerciasis elimination endgame. Acta Trop. 2021;221: 106020. doi: 10.1016/j.actatropica.2021.106020 PubMed DOI PMC

Jacobi CA, Enyong P, Renz A. Individual exposure to Simulium bites and intensity of Onchocerca volvulus infection. Parasit Vectors. 2010;3: 1–6. doi: 10.1186/1756-3305-3-1 PubMed DOI PMC

Arcà B, Ribeiro JM. Saliva of hematophagous insects: a multifaceted toolkit. Curr Opin Insect Sci. 2018;29: 102–109. doi: 10.1016/j.cois.2018.07.012 PubMed DOI

Fontaine A, Pascual A, Orlandi-Pradines E, Diouf I, Remoué F, Pagès F, et al.. Relationship between exposure to vector bites and antibody responses to mosquito salivary gland extracts. PLoS One. 2011;6: e29107. doi: 10.1371/journal.pone.0029107 PubMed DOI PMC

Doucoure S, Mouchet F, Cornelie S, DeHecq JS, Rutee AH, Roca Y, et al.. Evaluation of the human IgG antibody response to Aedes albopictus saliva as a new specific biomarker of exposure to vector bites. PLoS Negl Trop Dis. 2012;6: e1487. doi: 10.1371/journal.pntd.0001487 PubMed DOI PMC

Vlkova M, Rohousova I, Hostomska J, Pohankova L, Zidkova L, Drahota J, et al.. Kinetics of antibody response in BALB/c and C57BL/6 mice bitten by Phlebotomus papatasi. PLoS Negl Trop Dis. 2012;6: e1719. doi: 10.1371/journal.pntd.0001719 PubMed DOI PMC

Caljon G, Van Den Abbeele J, Sternberg JM, Coosemans M, De Baetselier P, Magez S. Tsetse fly saliva biases the immune response to Th2 and induces anti-vector antibodies that are a useful tool for exposure assessment. Int J Parasitol. 2006;36: 1025–1035. doi: 10.1016/j.ijpara.2006.05.002 PubMed DOI

Schwarz A, Sternberg JM, Johnston V, Medrano-Mercado N, Anderson JM, Hume JCC, et al.. Antibody responses of domestic animals to salivary antigens of Triatoma infestans as biomarkers for low-level infestation of triatomines. Int J Parasitol. 2009;39: 1021–1029. doi: 10.1016/j.ijpara.2009.01.010 PubMed DOI PMC

Kostalova T, Lestinova T, Sumova P, Vlkova M, Rohousova I, Berriatua E, et al.. Canine antibodies against salivary recombinant proteins of Phlebotomus perniciosus: A longitudinal study in an endemic focus of canine leishmaniasis. PLoS Negl Trop Dis. 2015;9: e0003855. doi: 10.1371/journal.pntd.0003855 PubMed DOI PMC

Quinnell RJ, Soremekun S, Bates PA, Rogers ME, Garcez LM, Courtenay O. Antibody response to sand fly saliva is a marker of transmission intensity but not disease progression in dogs naturally infected with Leishmania infantum. Parasit Vectors. 2018;11: 1–12. doi: 10.1186/s13071-017-2573-y PubMed DOI PMC

Brosseau L, Drame PM, Besnard P, Toto JC, Foumane V, Le Mire J, et al.. Human antibody response to Anopheles Saliva for comparing the efficacy of three malaria vector control methods in Balombo, Angola. PLoS One. 2012;7: e44189. doi: 10.1371/journal.pone.0044189 PubMed DOI PMC

Drame PM, Poinsignon A, Besnard P, Le Mire J, Dos-Santos MA, Sow CS, et al.. Human antibody response to Anopheles gambiae saliva: An immuno-epidemiological biomarker to evaluate the efficacy of insecticide-treated nets in malaria vector control. Am J Trop Med Hyg. 2010;83: 115–121. doi: 10.4269/ajtmh.2010.09-0684 PubMed DOI PMC

Gidwani K, Picado A, Rijal S, Singh SP, Roy L, Volfova V, et al.. Serological markers of sand fly exposure to evaluate insecticidal nets against visceral leishmaniasis in India and Nepal: A cluster-randomized trial. PLoS Negl Trop Dis. 2011;5: e1296. doi: 10.1371/journal.pntd.0001296 PubMed DOI PMC

Dinesh DS, Das P, Picado A, Davies C, Speybroeck N, Ostyn B, et al.. Long-lasting insecticidal nets fail at household level to reduce abundance of sandfly vector Phlebotomus argentipes in treated houses in Bihar (India). Trop Med Int Health. 2008;13: 953–958. doi: 10.1111/j.1365-3156.2008.02096.x PubMed DOI

Schwarz A, Juarez JA, Richards J, Rath B, Machaca VQ, Castro YE, et al.. Anti-triatomine saliva immunoassays for the evaluation of impregnated netting trials against Chagas disease transmission. Int J Parasitol. 2011;41: 591–594. doi: 10.1016/j.ijpara.2011.02.001 PubMed DOI PMC

Willen L, Basáñez MG, Dvorak V, Veriegh FBD, Aboagye FT, Idun B, et al.. Human immune response against salivary antigens of Simulium damnosum s.l.: A new epidemiological marker for exposure to blackfly bites in onchocerciasis endemic areas. PLoS Negl Trop Dis. 2021;15: e0009512. doi: 10.1371/journal.pntd.0009512 PubMed DOI PMC

Hougard J-M, Alley ES, Yaméogo L, Dadzie KY, Boatin BA. Eliminating onchocerciasis after 14 years of vector control: A proved strategy. J Infect Dis. 2001;184: 497–503. doi: 10.1086/322789 PubMed DOI

O’Hanlon SJ, Slater HC, Cheke RA, Boatin BA, Coffeng LE, Pion SDS, et al.. Model-based geostatistical mapping of the prevalence of Onchocerca volvulus in West Africa. PLoS Negl Trop Dis. 2016;10: e0004328. doi: 10.1371/journal.pntd.0004328 PubMed DOI PMC

Alley ES, Plaisier AP, Boatin BA, Dadzie KY, Remme J, Zerbo G, et al.. The impact of five years of annual ivermectin treatment on skin microfilarial loads in the onchocerciasis focus of Asubende, Ghana. Trans R Soc Trop Med Hyg. 1994;88: 581–584. doi: 10.1016/0035-9203(94)90172-4 PubMed DOI

Lamberton PHL, Cheke RA, Winskill P, Tirados I, Walker M, Osei-Atweneboana MY, et al.. Onchocerciasis transmission in Ghana: Persistence under different control strategies and the role of the simuliid vectors. PLoS Negl Trop Dis. 2015;9: e0003688. doi: 10.1371/journal.pntd.0003688 PubMed DOI PMC

Osei-Atweneboana MY, Eng JKL, Boakye DA, Gyapong JO, Prichard RK. Prevalence and intensity of Onchocerca volvulus infection and efficacy of ivermectin in endemic communities in Ghana: a two-phase epidemiological study. Lancet. 2007;369: 2021–2029. doi: 10.1016/S0140-6736(07)60942-8 PubMed DOI

Post RJ, Cheke RA, Boakye DA, Wilson MD, Osei-Atweneboana MY, Tetteh-Kumah A, et al.. Stability and change in the distribution of cytospecies of the Simulium damnosum complex (Diptera: Simuliidae) in southern Ghana from 1971 to 2011. Parasit Vectors. 2013;6: 1–11. doi: 10.1186/1756-3305-6-1 PubMed DOI PMC

Lamberton PHL, Cheke RA, Walker M, Winskill P, Osei-Atweneboana MY, Tirados I, et al.. Onchocerciasis transmission in Ghana: Biting and parous rates of host-seeking sibling species of the Simulium damnosum complex. Parasit Vectors. 2014;7: 511. doi: 10.1186/s13071-014-0511-9 PubMed DOI PMC

Cheke RA, Basáñez M, Perry M, White M, Garms R, Obuobie E, et al.. Potential effects of warmer worms and vectors on onchocerciasis transmission in West Africa. Philos Trans R Soc B Biol Sci. 2015;370: 20130559. doi: 10.1098/rstb.2013.0559 PubMed DOI PMC

Frempong KK, Walker M, Cheke RA, Tetevi EJ, Gyan ET, Owusu EO, et al.. Does increasing treatment frequency address suboptimal responses to ivermectin for the control and elimination of river blindness? Clin Infect Dis. 2016;62: 1338–1347. doi: 10.1093/cid/ciw144 PubMed DOI PMC

Doyle SR, Bourguinat C, Nana-Djeunga HC, Kengne-Ouafo JA, Pion SDS, Bopda J, et al.. Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity. PLoS Negl Trop Dis. 2017;11: e0005816. doi: 10.1371/journal.pntd.0005816 PubMed DOI PMC

Plaisier AP, van Oortmarssen GJ, Habbema JDF, Remme J, Alley ES. ONCHOSIM: a model and computer simulation program for the transmission and control of onchocerciasis. Comput Methods Programs Biomed. 1990;31: 43–56. doi: 10.1016/0169-2607(90)90030-d PubMed DOI

Basáñez MG, Churcher TS, Grillet ME. Onchocerca-Simulium interactions and the population and evolutionary biology of Onchocerca volvulus. Adv Parasitol. 2009;68: 263–313. doi: 10.1016/S0065-308X(08)00611-8 PubMed DOI

Basáñez MG, Walker M, Turner HC, Coffeng LE, de Vlas SJ, Stolk WA. River blindness: Mathematical models for control and elimination. Adv Parasitol. 2016;94: 247–341. doi: 10.1016/bs.apar.2016.08.003 PubMed DOI

Hamley JID, Blok DJ, Walker M, Milton P, Hopkins AD, Hamill LC, et al.. What does the COVID-19 pandemic mean for the next decade of onchocerciasis control and elimination? Trans R Soc Trop Med Hyg. 2021;115: 269–280. doi: 10.1093/trstmh/traa193 PubMed DOI PMC

Turner HC, Osei-Atweneboana MY, Walker M, Tettevi EJ, Churcher TS, Asiedu O, et al.. The cost of annual versus biannual community-directed treatment of onchocerciasis with ivermectin: Ghana as a case study. PLoS Negl Trop Dis. 2013;7: e2452. doi: 10.1371/journal.pntd.0002452 PubMed DOI PMC

Walsh JF, Davies JB, Le Berre R, Garms R. Standardization of criteria for assessing the effect of Simulium control in onchocerciasis control programmes. Trans R Soc Trop Med Hyg. 1978;72: 675–676. doi: 10.1016/0035-9203(78)90039-1 PubMed DOI

Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009.

South A. rworldmap: A New R package for Mapping Global Data. R J. 2011;3: 35–43.

Veriegh FBD. Impacts of semi-annual ivermectin treatment and the spatio-temporal distribution and abundance of Simulium damnosum sensu lato vectors on the transmission of Onchocerca volvulus. PhD Thesis. Kwame Nkrumah University of Science and Technology (KNUST), Ghana. 2020.

Biritwum NK, de Souza DK, Asiedu O, Marfo B, Amazigo UV, Gyapong JO. Onchocerciasis control in Ghana (1974–2016). Parasit Vectors. 2021;14: 1–9. doi: 10.1186/s13071-020-04505-4 PubMed DOI PMC

R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available: https://www.r-project.org/ (accessed 11 December 2021).

Cohen J. Statistical Power Analysis for the Behavioral Sciences. Second edition. Lawrence Erlbaum Associates; 1988.

Ryan TP. Sample Size Determination and Power. John Wiley & Sons, Inc.; 2013. doi: 10.1002/9781118439241 DOI

Andrade BB, Teixeira CR. Biomarkers for exposure to sand flies bites as tools to aid control of leishmaniasis. Front Immunol. 2012;3: 121. doi: 10.3389/fimmu.2012.00121 PubMed DOI PMC

Lestinova T, Rohousova I, Sima M, de Oliveira CI, Volf P. Insights into the sand fly saliva: Blood-feeding and immune interactions between sand flies, hosts, and Leishmania. PLoS Negl Trop Dis. 2017;11: e0005600. doi: 10.1371/journal.pntd.0005600 PubMed DOI PMC

Doyle SR, Armoo S, Renz A, Taylor MJ, Osei-Atweneboana MY, Grant WN. Discrimination between Onchocerca volvulus and O. ochengi filarial larvae in Simulium damnosum (s.l.) and their distribution throughout central Ghana using a versatile high-resolution speciation assay. Parasit Vectors. 2016;9: 536. doi: 10.1186/s13071-016-1832-7 PubMed DOI PMC

Yarzábal L, Basáñez MG, Ramírez-Pérez J, Ramírez A, Botto C, et al.. Experimental and natural infection of Simulium sanchezi by Mansonella ozzardi in the Middle Orinoco region of Venezuela. Trans R Soc Trop Med Hyg. 1985;79: 29–33. doi: 10.1016/0035-9203(85)90226-3 PubMed DOI

Cupp EW, Maré CJ, Cupp MS, Ramberg FB. Biological transmission of vesicular stomatitis virus (New Jersey) by Simulium vittatum (Diptera: Simuliidae). J Med Entomol. 1992;29: 137–140. doi: 10.1093/jmedent/29.2.137 PubMed DOI

Turner HC, Walker M, Lustigman S, Taylor DW, Basáñez MG. Human onchocerciasis: Modelling the potential long-term consequences of a vaccination programme. PLoS Negl Trop Dis. 2015;9: e0003938. doi: 10.1371/journal.pntd.0003938 PubMed DOI PMC

Rizzo C, Ronca R, Fiorentino G, Verra F, Mangano V, Poinsignon A, et al.. Humoral response to the Anopheles gambiae salivary protein gSG6: A serological indicator of exposure to Afrotropical malaria vectors. PLoS One. 2011;6: e17980. doi: 10.1371/journal.pone.0017980 PubMed DOI PMC

Buezo Montero S, Gabrieli P, Montarsi F, Borean A, Capelli S, De Silvestro G, et al.. IgG antibody responses to the Aedes albopictus 34k2 salivary protein as novel candidate marker of human exposure to the tiger mosquito. Front Cell Infect Microbiol. 2020;10: 377. doi: 10.3389/fcimb.2020.00377 PubMed DOI PMC

Rizzo C, Ronca R, Lombardo F, Mangano V, Sirima SB, Nèbiè I, et al.. IgG1 and IgG4 antibody responses to the Anopheles gambiae salivary protein gSG6 in the sympatric ethnic groups Mossi and Fulani in a malaria hyperendemic area of Burkina Faso. PLoS One. 2014;9: e96130. doi: 10.1371/journal.pone.0096130 PubMed DOI PMC

Londono-Renteria B, Drame PM, Montiel J, Vasquez AM, Tobón-Castaño A, Taylor M, et al.. Identification and pilot evaluation of salivary peptides from Anopheles albimanus as biomarkers for bite exposure and malaria infection in Colombia. Int J Mol Sci. 2020;21: 691. doi: 10.3390/ijms21030691 PubMed DOI PMC

Montiel J, Carbal LF, Tobón-Castaño A, Vásquez GM, Fisher ML, Londono-Rentería B. IgG antibody response against Anopheles salivary gland proteins in asymptomatic Plasmodium infections in Nariño, Colombia. Malar J. 2020;19: 42. doi: 10.1186/s12936-020-3128-9 PubMed DOI PMC

Poinsignon A, Cornelie S, Ba F, Boulanger D, Sow C, Rossignol M, et al.. Human IgG response to a salivary peptide, gSG6-P1, as a new immuno-epidemiological tool for evaluating low-level exposure to Anopheles bites. Malar J. 2009;8: 198. doi: 10.1186/1475-2875-8-198 PubMed DOI PMC

Peng Z, Simons FER. Mosquito allergy: Immune mechanisms and recombinant salivary allergens. Int Arch Allergy Immunol. 2004;133: 198–209. doi: 10.1159/000076787 PubMed DOI

Feingold BF, Benjamini E, Michaeli D. The allergic responses to insect bites. Annu Rev Entomol. 1968;13: 137–158. doi: 10.1146/annurev.en.13.010168.001033 DOI

Peng Z, Simons FER. A prospective study of naturally acquired sensitization and subsequent desensitization to mosquito bites and concurrent antibody responses. J Allergy Clin Immunol. 1998;101: 284–286. doi: 10.1016/s0091-6749(98)70395-1 PubMed DOI

Mellanby K. Man’s reaction to mosquito bites. Nature. 1946;158: 554. doi: 10.1038/158554c0 PubMed DOI

Mondragon-Shem K, Al-Salem WS, Kelly-Hope L, Abdeladhim M, Al-Zahrani MH, Valenzuela JG, et al.. Severity of Old World cutaneous leishmaniasis is influenced by previous exposure to sandfly bites in Saudi Arabia. PLoS Negl Trop Dis. 2015;9: e0003449. doi: 10.1371/journal.pntd.0003449 PubMed DOI PMC

Rizzo C, Lombardo F, Ronca R, Mangano V, Sirima S, Nèbiè I, et al.. Differential antibody response to the Anopheles gambiae gSG6 and cE5 salivary proteins in individuals naturally exposed to bites of malaria vectors. Parasit Vectors. 2014;7: 549. doi: 10.1186/s13071-014-0549-8 PubMed DOI PMC

Ribeiro JMC, Arcà B, Lombardo F, Calvo E, Phan VM, Chandra PK, et al.. An annotated catalogue of salivary gland transcripts in the adult female mosquito, Aedes aegypti. BMC Genom. 2007;8: 6. doi: 10.1186/1471-2164-8-6 PubMed DOI PMC

Londono-Renteria BL, Shakeri H, Rozo-Lopez P, Conway MJ, Duggan N, Jaberi-Douraki M, et al.. Serosurvey of human antibodies recognizing Aedes aegypti D7 salivary proteins in Colombia. Front Public Health. 2018;6: 11. doi: 10.3389/fpubh.2018.00011 PubMed DOI PMC

World Health Organization & Onchocerciasis Control Programme in West Africa. Socio-demographic study in the Pru Basin. Ouagadougou 1l–15 March 2002. Available: https://apps.who.int/iris/handle/10665/311605 (accessed 11 December 2021).

Kim R, van Moorsel T, Kapstein EB. The National and Regional Socio-Economic Impact of Newmont Ghana’s Ahafo Mine. Steward Redqueen Rep. 2013. Available: https://s24.q4cdn.com/382246808/files/doc_downloads/operations_projects/africa/quick_links/Socio-economic-impact-of-Ahafo-Operations.pdf (accessed 11 December 2021).

Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16: 626–638. doi: 10.1038/nri.2016.90 PubMed DOI

White MT, Griffin JT, Akpogheneta O, Conway DJ, Koram KA, Riley EM, et al.. Dynamics of the antibody response to Plasmodium falciparum infection in African children. J Infect Dis. 2014;210: 1115–1122. doi: 10.1093/infdis/jiu219 PubMed DOI

Yman V, White MT, Rono J, Arcà B, Osier FH, Troye-Blomberg M, et al.. Antibody acquisition models: A new tool for serological surveillance of malaria transmission intensity. Sci Rep. 2016;6: 1–10. doi: 10.1038/s41598-016-0001-8 PubMed DOI PMC

Remoue F, Alix E, Cornelie S, Sokhna C, Cisse B, Doucoure S, et al.. IgE and IgG4 antibody responses to Aedes saliva in African children. Acta Trop. 2007;104: 108–115. doi: 10.1016/j.actatropica.2007.07.011 PubMed DOI

Varga EM, Kausar F, Aberer W, Zach M, Eber E, Durham SR, et al.. Tolerant beekeepers display venom-specific functional IgG4 antibodies in the absence of specific IgE. J Allergy Clin Immunol. 2013;131: 1419–1421. doi: 10.1016/j.jaci.2012.08.037 PubMed DOI

García-Robaina JC, De La Torre-Morín F, Vazquez-Moncholi C, Fierro J, Bonnet-Moreno C. The natural history of Apis-specific IgG and IgG4 in beekeepers. Clin Exp Allergy. 1997;27: 418–423. doi: 10.1111/j.1365-2222.1997.tb00727.x PubMed DOI

World Health Organization. Department of Control of Neglected Tropical Diseases. Report of the Third Meeting of the WHO Onchocerciasis Technical Advisory Subgroup Geneva, Switzerland, 26–28 February 2019 (Editor: Cantey P). Available: https://www.who.int/publications/i/item/9789240006638 (accessed 11 December 2021).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...