Conserved and distinct morphological aspects of the salivary glands of sand fly vectors of leishmaniasis: an anatomical and ultrastructural study
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
32883363
PubMed Central
PMC7469427
DOI
10.1186/s13071-020-04311-y
PII: 10.1186/s13071-020-04311-y
Knihovny.cz E-zdroje
- Klíčová slova
- Lectin binding, Sand fly vectors, Secretory cell population, Ultrastructure,
- MeSH
- elektronová mikroskopie MeSH
- infekce přenášené vektorem MeSH
- komáří přenašeči anatomie a histologie parazitologie ultrastruktura MeSH
- leishmanióza přenos MeSH
- Phlebotomus anatomie a histologie parazitologie ultrastruktura MeSH
- Psychodidae anatomie a histologie parazitologie ultrastruktura MeSH
- slinné žlázy parazitologie ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Sand flies are vectors of Leishmania spp., the causative agents of leishmaniasis in vertebrates, including man. The sand fly saliva contains powerful pharmacologically active substances that prevent hemostasis and enhance Leishmania spp. infections. On the other hand, salivary proteins can protect vaccinated mice challenged with parasites. Therefore, sand fly salivary proteins are relevant for the epidemiology of leishmaniasis and can be a potential target for a vaccine against leishmaniasis. Despite this, studies on sand fly salivary glands (SGs) are limited. METHODS: The present study analyzes, in detail, the morphology, anatomy and ultrastructure of the SGs of sand fly vectors of the genera Lutzomyia and Phlebotomus. We used histology, transmission and scanning electron microscopy and lectin labeling associated with confocal laser microscopy. RESULTS: The SGs have conserved and distinct morphological aspects according to the distinct sand fly species. Each SG has a single rounded lobe constituting of c.100-120 secretory cells. The SG secretory cells, according to their ultrastructure and lectin binding, were classified into five different subpopulations, which may differ in secretory pathways. CONCLUSIONS: To the best of our knowledge, these morphological details of sand fly salivary glands are described for the first time. Further studies are necessary to better understand the role of these different cell types and better relate them with the production and secretion of the saliva substances, which has a fundamental role in the interaction of the sand fly vectors with Leishmania.
Zobrazit více v PubMed
WHO/PAHO Leishmaniases: epidemiological report of the Americas. Leishmaniases report No. 7. Washington: Pan American Health Organization; 2019.
Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med Vet Entomol. 2013;27:123–147. PubMed
Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, et al. A Historical Overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl Trop Dis. 2016;10:e0004349. PubMed PMC
Mondragon-Shem K, Al-Salem WS, Kelly-Hope L, Abdeladhim M, Al-Zahrani MH, Valenzuela JG, et al. Severity of old world cutaneous leishmaniasis is influenced by previous exposure to sandfly bites in Saudi Arabia. PLoS Negl Trop Dis. 2015;9:e0003449. PubMed PMC
Ockenfels B, Michael E, McDowell MA. Meta-analysis of the effects of insect vector saliva on host immune responses and infection of vector-transmitted pathogens: a focus on leishmaniasis. PLoS Negl Trop Dis. 2014;8:e3197. PubMed PMC
Lestinova T, Lestinova T, Rohousova I, Sima M, de Oliveira CI, Volf P. Insights into the sand fly saliva: blood-feeding and immune interactions between sandflies, hosts, and Leishmania. PLoS Negl Trop Dis. 2017;11:210. PubMed PMC
Theodos CM, Ribeiro JM, Titus RG. Analysis of enhancing effect of sand fly saliva on Leishmania infection in mice. Infect Immun. 1991;59:1592–1598. PubMed PMC
Kamhawi S. The biological and immunomodulatory properties of sand fly saliva and its role in the establishment of Leishmania infections. Microbes Infect. 2000;2:1765–1773. PubMed
Marinotti O, de Brito M, Moreira CK. Apyrase and alpha-glucosidase in the salivary glands of Aedes albopictus. Comp Biochem Physiol B Biochem Mol Biol. 1996;4:675–679. PubMed
Ribeiro JM, Francischetti IM. Role of arthropod saliva in blood feeding: sialome and aost-sialome perspectives. Annu Rev Entomol. 2003;48:73–88. PubMed
Anderson JM, Oliveira F, Kamhawi S, Mans BJ, Reynoso D, et al. Comparative SG transcriptomics of sandfly vectors of visceral leishmaniasis. BMC Genomics. 2006;7:52. PubMed PMC
Volf P, Rohousová I. Species-specific antigens in salivary glands of phlebotomine sandflies. Parasitology. 2001;122:37–41. PubMed
Adler S, Theodor O. The mouthparts, alimentary tract and salivary apparatus of the female in Phlebotomus papatasi. Ann Trop Med Hyg. 1926;20:109–142.
Perfilev PP. Beitrage Sur lánatomie de phlébotomes. Bull Soc Path Exotique. 1928; 21:159–71.
Abdel-Badei NM, Khater EI, Daba S, Shehata MG. Morphometrics and protein profiles of the salivary glands of Phlebotomus papatasi and Phlebotomus langeroni sand flies. Trans R Soc Trop Med Hyg. 2012;106:235–242. PubMed
Secundino NFC, Pimenta PFP. Scanning electron microscopic study of the egg and immature stages of the sand fly Lutzomyia longipalpis. Acta Microscopica. 1999;8:33–38.
Killick-Kendrick R, Leaney AJ, Ready PD. A laboratory culture of Lutzomyia longipalpis. Trans Roy Soc Trop Med Hyg. 1973;63:434. PubMed
Killick-Kendrick R, Lehane A, Ready PD. The establishment, maintenance and productivity of a laboratory colony of Lutzomyia longipalpis (Diptera: Psychodidae) J Med Entomol. 1977;13:429–440. PubMed
Volf P, Tesarová P, Nohýnková E. Salivary proteins and glycoproteins in sandflies of various species sex and age. Med Vet Entomol. 2000;14:251–256. PubMed
Pimenta PFP, De Souza W. Leishmania mexicana amazonensis surface charge of amastigote and promastigote forms. Exp Parasitol. 1983;56:194–206. PubMed
Nacif-Pimenta R, Mattos ACA, Orfanó AS, Barbosa L, Pimenta PFP, Coelho PMZ. Schistosoma mansoni in susceptible and resistant snail strains Biomphalaria tenagophila: in vivo tissue response and in vitro hemocyte interactions. PLoS ONE. 2012;7:e45637. PubMed PMC
Peters NC, Egen JG, Secundino N, Debrabant A, Kimblin N, et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science. 2008;321:970–974. PubMed PMC
Belkaid Y, Kamhawi S, Modi G, Valenzuela J, Ribeiro JMC, Sacks DL. Development of a natural model of cutaneous leishmaniasis: powerfull effects of vector saliva and saliva preexposure on the long term outcome of Leishmania major infection in the mouse ear dermis. J Exp Med. 1998;188:1941–1953. PubMed PMC
Bezerra HSS, Teixeira MJ. Effect of Lutzomyia wihmani (Diptera: Psychodidae) Salivary gland lysates on Leishmania (Viannia) braziliensis infection in BALB/c mice. Mem Inst Oswaldo Cruz. 2001;96:349–351. PubMed
Sacks D, Kamhawi S. Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis. Annu Rev Microbiol. 2001;55:453–483. PubMed
Oliveira EF, Oshiro ET, Fernandes WS, Murat PG, Medeiros MJ, Souza AI, et al. Experimental infection and transmission of Leishmania by Lutzomyia cruzi (Diptera: Psychodidae): aspects of the ecology of parasite-vector interactions. PLoS Negl Trop Dis. 2017;11:e000540. PubMed PMC
Belkaid Y, Valenzuela J, Kamhawi S, Rowton E, Sacks DL, Ribeiro JMC. Delayed-type hypersensitivity of Phlebotomus papatasi sand fly bite: an adaptive response induced by the fly? Proc Natl Acad Sci USA. 2000;97:6704–6709. PubMed PMC
Barral A, Honda E, Caldas A, Costa J, Vinhas R, Rowton E, et al. Human immune response to the sand fly salivary gland antigens: a useful epidemiological marker? Am J Trop Med Hyg. 2000;62:740–745. PubMed
Hall LR, Titus RG. Sand fly vector saliva selectively modulates macrophage functions that inhibit killing of Leishmania major and nitric oxide production. J Immunol. 1995;155:3501–3506. PubMed
Teixeira C, Gomes R, Oliveira F, Meneses C, Gilmor DC, Elnaiem DE, et al. Characterization of the early inflammatory infiltrate at the feeding site of infected sand flies in mice protected from vector-transmitted Leishmania major by exposure to uninfected bites. PLoS Negl Trop Dis. 2014;8:e2781. PubMed PMC
Carregaro V, Valenzuela JG, Cunha TM, Verri WA, Jr, Grespan R, Matsumura G, et al. Phlebotomine salivas inhibit immune inflammation-induced neutrophil migration via an autocrine DC-derived PGE2/IL-10 sequential pathway. J Leukoc Biol. 2008;84:104–114. PubMed PMC
Carregaro V, Costa DL, Brodskyn C, Barral AM, Barral-Neto M, Cunha FQ, et al. Dual effect of Lutzomyia longipalpis saliva on Leishmania braziliensis infection is mediated by distinct saliva-induced cellular recruitment into BALB/c mice ear. BMC Microbiol. 2013;13:102–113. PubMed PMC
Kamhawi S, Belkaid Y, Modi G, Rowton E, Sacks D. Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science. 2000;17:1351–1354. PubMed
Coutinho-Abreu IV, Valenzuela JG. Comparative evolution of sand fly salivary protein families and implications for biomarkers of vector exposure and salivary vaccine candidates. Front Cell Infect Microbiol. 2018;8:290. PubMed PMC
Valenzuela JG, Belkaid Y, Garfield MK, Mendez S, Kamhawi S, Rowton ED, et al. Toward a defined anti-Leishmania vaccine targeting vector antigens: characterization of a protective salivary protein. J Exp Med. 2001;194:331–342. PubMed PMC
Oliveira F, Rowton E, Aslan H, Gomes R, Castrovinci PA, Alvarenga PH, et al. A sand fly salivary protein vaccine shows efficacy against vector-transmitted cutaneous leishmaniasis in nonhuman primates. Sci Transl Med. 2015;7:290. PubMed
Chapman RF. The insects: structure and function. 4. London: Cambridge University Press; 1998.
Juhn J, Naeem-Ullah U, Guedes BAM, Majid A, Coleman J, Pimenta PFP, et al. Spatial mapping of gene expression in the salivary glands of the dengue vector mosquito. Aedes aegypti. Parasit Vectors. 2011;4:1. PubMed PMC
House CR, Ginsborg BL. Salivary gland. In: Kerkut GA, editor. Comprehensive insect physiology, biochemistry and pharmacology. Oxford: Pergamon Press; 1985. pp. 196–224.
Ali DW. The aminergic and peptidergic innervation of insect salivary glands. The J. Exp. Biol. 1997;200:1941–1949. PubMed
Valenzuela JG, Garfield M, Rowton ED, Pham VM. Identification of the most abundant secreted proteins from the salivary glands of the sand fly Lutzomyia longipalpis, vector of Leishmania chagasi. J Exp Biol. 2004;207:3717–3729. PubMed
Vlkova M, Sima M, Rohousova I, Kostalova T, Sumova P, Volfova V, et al. Comparative analysis of salivary gland transcriptomes of Phlebotomus orientalis sand flies from endemic and non-endemic foci of visceral leishmaniasis. PLoS Negl Trop Dis. 2014;8:e2709. PubMed PMC
Liman N, Alan E. The process of apoptosis in a holocrine gland as shown by the avian uropygial gland. Anat Rec. 2013;296:504–520. PubMed
Perrone JB, De Maio J, Spielman A. Regions of mosquito salivary gland distinguished by surface lectin binding characteristics. Insect Biochem Mol Biol. 1986;16:313–318.
Pimenta PFP, Touray M, Miller L. The journey of malarial sporozoites in the mosquito SG. J Eukaryot Microbiol. 1994;41:608–624. PubMed
Mohamed HÁ, Ingram GA, Molyneux DH, Sawyer BV. Use of fluorescein-labelled lectin binding of salivary gland to distinguish between Anopheles stephensi and Anopheles albimanus species and strains. Insect Biochemistry. 1991;21:767–773.
Okolo CJ, Jenni L, Molyneux DH, Wallbanks KR. Surface differences of Glossina salivary glands and infectivity of Trypanosoma brucei gambiense to Glossina. Ann Soc Belg Med Trop. 1990;70:39–47. PubMed
Molyneux DH, Okolo CJ, Lines JD. Variation in fluorescein-labelled lectin staining of salivary glands in the Anopheles gambiae complex. Med Vet Entomol. 1990;4:459–462. PubMed