Editorial: Hematophagous arthropod saliva: a multifunctional tool
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu úvodníky
PubMed
35909959
PubMed Central
PMC9326350
DOI
10.3389/fcimb.2022.977511
Knihovny.cz E-zdroje
- Klíčová slova
- bioactive molecules, hematophagous vectors, immunomodulation, immunotherapy, saliva,
- MeSH
- členovci - vektory MeSH
- členovci * MeSH
- hmyz - vektory MeSH
- sliny MeSH
- stravovací zvyklosti MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- úvodníky MeSH
Biotechnology Oswaldo Cruz Foundation Eusébio Brazil
Snyder Institute for Chronic Diseases University of Calgary Calgary Canada
Editorial on the Research Topic The Potential Role of Bioactive Salivary Molecules from Hematophagous Arthropods as Immunopharmacological Tools on Vector-Borne Infections and Noninfectious Diseases PubMed
Zobrazit více v PubMed
Boycott A. E. (1928). Sensitisation to insect bites. Univ. Coll. Hosp Mag 13, 200–202.
Gomes R., Oliveira F. (2012). The immune response to sand fly salivary proteins and its influence on leishmania immunity. Front. Immunol. 3. doi: 10.3389/fimmu.2012.00110 PubMed DOI PMC
Gomes R., Oliveira F., Teixeira C., Meneses C., Gilmore D. C., Elnaiem D. E., et al. (2012). Immunity to sand fly salivary protein LJM11 modulates host response to vector-transmitted leishmania conferring ulcer-free protection. J. Invest Dermatol. 132 (12), 2735–2743. doi: 10.1038/jid.2012.205 PubMed DOI PMC
Gordon R. M. (1922). The susceptibility of the individual to the bites of DOI
Grespan R., Lemos H. P., Carregaro V., Verri W. A., Jr, Souto F. O., de Oliveira C. J., et al. (2012). The protein LJM 111 from lutzomyia longipalpis salivary gland extract (SGE) accounts for the SGE-inhibitory effects upon inflammatory parameters in experimental arthritis model. Int. Immunopharmacol 12 (4), 603–610. doi: 10.1016/j.intimp.2012.02.004 PubMed DOI PMC
Lestinova T., Rohousova I., Sima M., de Oliveira C. I., Volf P. (2017). Insights into the sand fly saliva: Blood-feeding and immune interactions between sand flies, hosts, and leishmania. PloS Negl. Trop. Dis. 11 (7), e0005600. doi: 10.1371/journal.pntd.0005600 PubMed DOI PMC
Manning J. E., Morens D. M., Kamhawi S., Valenzuela J. G., Memoli M. (2018). Mosquito saliva: The hope for a universal arbovirus vaccine? J. Infect. Dis. 218 (1), 7–15. doi: 10.1093/infdis/jiy179 PubMed DOI PMC
Nuttall P. A. (2018). Wonders of tick saliva. Ticks Tick Borne Dis. 10 (2), 470–481. doi: 10.1016/j.ttbdis.2018.11.005 PubMed DOI
Ribeiro J. M. (1995). Blood-feeding arthropods: live syringes or invertebrate pharmacologists? Infect. Agents Dis. 4, 143–152. PubMed
Sá-Nunes A., Oliveira C. J. F. (2021). Dendritic cells as a disputed fortress on the tick-host battlefield. Trends Parasitol. 37 (4), 340–354. doi: 10.1016/j.pt.2020.11.004 PubMed DOI
Valenzuela J. G., Belkaid Y., Garfield M. K., Mendez S., Kamhawi S., Rowton E. D., et al. (2001). Toward a defined anti-leishmania vaccine targeting vector antigens: characterization of a protective salivary protein. J. Exp. Med. 194, 331–342. doi: 10.1084/jem.194.3.331 PubMed DOI PMC