Sand fly saliva reprograms skin fibroblasts to enhance arbovirus infection
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41362756
PubMed Central
PMC12682282
DOI
10.1016/j.isci.2025.113854
PII: S2589-0042(25)02115-7
Knihovny.cz E-zdroje
- Klíčová slova
- health sciences, medical microbiology, oral microbiology, viral microbiology,
- Publikační typ
- časopisecké články MeSH
Arbovirus transmission by sand flies is a growing public health concern, yet the early skin events shaping infection outcomes remain undefined. We establish a mouse model of Toscana virus (TOSV) infection that incorporates sand fly salivary factors to mimic natural transmission. Saliva from two distinct sand fly genera significantly enhanced infection and promoted neurological signs and joint inflammation, recapitulating key features of human TOSV disease. In the skin, dermal macrophages and fibroblasts were the main infected cell types, but only fibroblasts generated infectious virus. Saliva reprogrammed fibroblasts into a wound-healing state permissive to viral replication, driving local viral amplification, systemic spread, and thereby clinical disease. These findings identify skin fibroblasts as central determinants of host susceptibility and reveal that sand fly saliva actively remodels the skin to exacerbate viral pathogenesis. This work redefines the skin's role in sand fly-transmitted infection and highlights new targets for therapeutic and vaccine development.
Department of Parasitology Faculty of Science Charles University 128 00 Prague Czech Republic
Genomics and Bioinformatics Laboratory Department of Biology University of York Heslington York UK
Maltepe University Faculty of Medicine Istanbul Turkiye
MRC University of Glasgow Centre for Virus Research 464 Bearsden Road Glasgow UK
School of Medicine University of Leeds Leeds UK
Virology Unit Department of Medical Biotechnologies University of Siena 53100 Siena Italy
Zobrazit více v PubMed
Ayhan N., Eldin C., Charrel R. Toscana virus: A comprehensive review of 1381 cases showing an emerging threat in the Mediterranean regions. J. Infect. 2025;90:106415. doi: 10.1016/j.jinf.2025.106415. PubMed DOI
Gori Savellini G., Gandolfo C., Cusi M.G. Epidemiology of Toscana virus in South Tuscany over the years 2011-2019. J. Clin. Virol. 2020;128 doi: 10.1016/j.jcv.2020.104452. PubMed DOI
Jancarova M., Polanska N., Volf P., Dvorak V. The role of sand flies as vectors of viruses other than phleboviruses. J. Gen. Virol. 2023;104:1–20. doi: 10.1099/jgv.0.001837. PubMed DOI
Maroli M., Feliciangeli M.D., Bichaud L., Charrel R.N., Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med. Vet. Entomol. 2013;27:123–147. doi: 10.1111/j.1365-2915.2012.01034.x. PubMed DOI
Keskek Turk Y., Ergunay K., Kohl A., Hughes J., McKimmie C.S. Toscana virus – an emerging Mediterranean arbovirus transmitted by sand flies. J. Gen. Virol. 2024;105 doi: 10.1099/jgv.0.002045. PubMed DOI PMC
Kuhn J.H., Abe J., Adkins S., Alkhovsky S.V., Avšič-Županc T., Ayllón M.A., Bahl J., Balkema-Buschmann A., Ballinger M.J., Kumar Baranwal V., et al. Annual (2023) taxonomic update of RNA-directed RNA polymerase-encoding negative-sense RNA viruses (realm Riboviria: kingdom Orthornavirae: phylum Negarnaviricota) J. Gen. Virol. 2023;104 doi: 10.1099/jgv.0.001864. PubMed DOI PMC
Charrel R.N., Bichaud L., de Lamballerie X. Emergence of Toscana virus in the mediterranean area. World J. Virol. 2012;1:135–141. doi: 10.5501/wjv.v1.i5.135. PubMed DOI PMC
Charrel R.N., Gallian P., Navarro-Marí J.-M., Nicoletti L., Papa A., Sánchez-Seco M.P., Tenorio A., de Lamballerie X. Emergence of Toscana Virus in Europe. Emerg. Infect. Dis. 2005;11:1657–1663. doi: 10.3201/eid1111.050869. PubMed DOI PMC
Maia C. Sand fly-borne diseases in Europe: epidemiological overview and potential triggers for their emergence and re-emergence. J. Comp. Pathol. 2024;209:6–12. doi: 10.1016/j.jcpa.2024.01.001. PubMed DOI
Dersch R., Sophocleous A., Cadar D., Emmerich P., Schmidt-Chanasit J., Rauer S. Toscana virus encephalitis in Southwest Germany: a retrospective study. BMC Neurol. 2021;21:495. doi: 10.1186/s12883-021-02528-7. PubMed DOI PMC
Pawar N., Seth A.K. Chandipura Virus in India: A Comprehensive Epidemiological Review. J. Vector Borne Dis. 2025 doi: 10.4103/JVBD.JVBD_236_24. PubMed DOI
Conway M.J., Colpitts T.M., Fikrig E. Role of the Vector in Arbovirus Transmission. Annu. Rev. Virol. 2014;1:71–88. doi: 10.1146/annurev-virology-031413-085513. PubMed DOI PMC
Pingen M., Schmid M.A., Harris E., McKimmie C.S. Mosquito Biting Modulates Skin Response to Virus Infection. Trends Parasitol. 2017;33:645–657. doi: 10.1016/j.pt.2017.04.003. PubMed DOI
Edwards J.F., Higgs S., Beaty B.J. Mosquito Feeding-Induced Enhancement of Cache Valley Virus (Bunyaviridae) Infection in Mice. J. Med. Entomol. 1998;35:261–265. doi: 10.1093/jmedent/35.3.261. PubMed DOI
Le Coupanec A., Babin D., Fiette L., Jouvion G., Ave P., Misse D., Bouloy M., Choumet V. Aedes Mosquito Saliva Modulates Rift Valley Fever Virus Pathogenicity. PLoS Negl. Trop. Dis. 2013;7 doi: 10.1371/journal.pntd.0002237. PubMed DOI PMC
Pingen M., Bryden S.R., Pondeville E., Schnettler E., Kohl A., Merits A., Fazakerley J.K., Graham G.J., McKimmie C.S. Host Inflammatory Response to Mosquito Bites Enhances the Severity of Arbovirus Infection. Immunity. 2016;44:1455–1469. doi: 10.1016/j.immuni.2016.06.002. PubMed DOI PMC
Styer L.M., Lim P.-Y., Louie K.L., Albright R.G., Kramer L.D., Bernard K.A. Mosquito Saliva Causes Enhancement of West Nile Virus Infection in Mice. J. Virol. 2011;85:1517–1527. doi: 10.1128/jvi.01112-10. PubMed DOI PMC
Lefteri D.A., Bryden S.R., Pingen M., Terry S., McCafferty A., Beswick E.F., Georgiev G., Van der Laan M., Mastrullo V., Campagnolo P., et al. Mosquito saliva enhances virus infection through sialokinin-dependent vascular leakage. Proc. Natl. Acad. Sci. USA. 2022;119 doi: 10.1073/pnas.2114309119. PubMed DOI PMC
Agarwal A., Joshi G., Nagar D.P., Sharma A.K., Sukumaran D., Pant S.C., Parida M.M., Dash P.K. Mosquito saliva induced cutaneous events augment Chikungunya virus replication and disease progression. Infect. Genet. Evol. 2016;40:126–135. doi: 10.1016/j.meegid.2016.02.033. PubMed DOI
Belkaid Y., Kamhawi S., Modi G., Valenzuela J., Noben-Trauth N., Rowton E., Ribeiro J., Sacks D.L. Development of a Natural Model of Cutaneous Leishmaniasis: Powerful Effects of Vector Saliva and Saliva Preexposure on the Long-Term Outcome of Leishmania major Infection in the Mouse Ear Dermis. J. Exp. Med. 1998;188:1941–1953. doi: 10.1084/jem.188.10.1941. PubMed DOI PMC
Peters N.C., Egen J.G., Secundino N., Debrabant A., Kimblin N., Kamhawi S., Lawyer P., Fay M.P., Germain R.N., Sacks D. In Vivo Imaging Reveals an Essential Role for Neutrophils in Leishmaniasis Transmitted by Sand Flies. Science. 2008;321:970–974. doi: 10.1126/science.1159194. PubMed DOI PMC
Titus R.G., Ribeiro J.M. Salivary Gland Lysates from the Sand Fly Lutzomyia longipalpis Enhance Leishmania Infectivity. Science. 1988;239:1306–1308. doi: 10.1126/science.3344436. PubMed DOI
Cusi M.G., Gori Savellini G., Terrosi C., Di Genova G., Valassina M., Valentini M., Bartolommei S., Miracco C. Development of a mouse model for the study of Toscana virus pathogenesis. Virology. 2005;333:66–73. doi: 10.1016/j.virol.2004.12.025. PubMed DOI
Lazear H.M., Govero J., Smith A.M., Platt D.J., Fernandez E., Miner J.J., Diamond M.S. A Mouse Model of Zika Virus Pathogenesis. Cell Host Microbe. 2016;19:720–730. doi: 10.1016/j.chom.2016.03.010. PubMed DOI PMC
Lestinova T., Rohousova I., Sima M., de Oliveira C.I., Volf P. Insights into the sand fly saliva: Blood-feeding and immune interactions between sand flies, hosts, and Leishmania. PLoS Negl. Trop. Dis. 2017;11 doi: 10.1371/journal.pntd.0005600. PubMed DOI PMC
Dey R., Joshi A.B., Oliveira F., Pereira L., Guimarães-Costa A.B., Serafim T.D., de Castro W., Coutinho-Abreu I.V., Bhattacharya P., Townsend S., et al. Gut Microbes Egested during Bites of Infected Sand Flies Augment Severity of Leishmaniasis via Inflammasome-Derived IL-1β. Cell Host Microbe. 2018;23:134–143.e6. doi: 10.1016/j.chom.2017.12.002. PubMed DOI PMC
Kelly P.H., Bahr S.M., Serafim T.D., Ajami N.J., Petrosino J.F., Meneses C., Kirby J.R., Valenzuela J.G., Kamhawi S., Wilson M.E. The gut microbiome of the vector lutzomyia longipalpis is essential for survival of leishmania infantum. mBio. 2017;8:e01121-16. doi: 10.1128/mBio.01121-16. PubMed DOI PMC
Wang Z., Nie K., Liang Y., Niu J., Yu X., Zhang O., Liu L., Shi X., Wang Y., Feng X., et al. A mosquito salivary protein-driven influx of myeloid cells facilitates flavivirus transmission. EMBO J. 2024;43:1690–1721. doi: 10.1038/s44318-024-00056-x. PubMed DOI PMC
Alexander A.J.T., Confort M.P., Desloire S., Dunlop J.I., Kuchi S., Sreenu V.B., Mair D., Wilkie G.S., da Silva Filipe A., Brennan B., et al. Development of a reverse genetics system for Toscana virus (Lineage A) Viruses. 2020;12:411–415. doi: 10.3390/v12040411. PubMed DOI PMC
Jiang D., Guo R., Machens H.G., Rinkevich Y. Diversity of Fibroblasts and Their Roles in Wound Healing. Cold Spring Harb. Perspect. Biol. 2023;15 doi: 10.1101/cshperspect.a041222. PubMed DOI PMC
Plikus M.V., Wang X., Sinha S., Forte E., Thompson S.M., Herzog E.L., Driskell R.R., Rosenthal N., Biernaskie J., Horsley V. Fibroblasts: Origins, definitions, and functions in health and disease. Cell. 2021;184:3852–3872. doi: 10.1016/j.cell.2021.06.024. PubMed DOI PMC
Bautista-Hernández L.A., Gómez-Olivares J.L., Buentello-Volante B., Bautista-de Lucio V.M. Fibroblasts: the unknown sentinels eliciting immune responses against microorganisms. Eur. J. Microbiol. Immunol. 2017;7:151–157. doi: 10.1556/1886.2017.00009. PubMed DOI PMC
Rong L., Liu J., Qi Y., Graham A.M., Parmacek M.S., Li S. GATA-6 promotes cell survival by up-regulating BMP-2 expression during embryonic stem cell differentiation. Mol. Biol. Cell. 2012;23:3754–3763. doi: 10.1091/mbc.E12-04-0313. PubMed DOI PMC
Saito S., Kitabatake M., Ouji-Sageshima N., Ogawa T., Oda A., Nishimura T., Nishioka T., Fushimi S., Hara A., Shichino S., et al. Angiopoietin-like 4 Is a Critical Regulator of Fibroblasts during Pulmonary Fibrosis Development. Am. J. Respir. Cell Mol. Biol. 2023;69:328–339. doi: 10.1165/rcmb.2022-0304oc. PubMed DOI
Ushakumary M.G., Green J., Riccetti M.R., Na C.-L., Mohanraj D., Guo M., Perl A.-K.T. Matrix fibroblast function during alveolarization is dependent on GATA6. 2022. DOI
Zhang H., Qiu J., Zhao Q., Zhang Y., Zheng H., Dou Z., Yan Y. Tanshinone IIA alleviates bleomycin-induced pulmonary fibrosis by inhibiting Zbtb16. Pulm. Pharmacol. Ther. 2024;84 doi: 10.1016/j.pupt.2024.102285. PubMed DOI
Bielli A., Scioli M.G., D’Amico F., Tarquini C., Agostinelli S., Costanza G., Doldo E., Campione E., Passeri D., Coniglione F., Orlandi A. Cellular retinoic acid binding protein-II expression and its potential role in skin aging. Aging. 2019;11:1619–1632. doi: 10.18632/aging.101813. PubMed DOI PMC
Martinez-Ferrer M., Afshar-Sherif A.R., Uwamariya C., De Crombrugghe B., Davidson J.M., Bhowmick N.A. Dermal transforming growth factor-β responsiveness mediates wound contraction and epithelial closure. Am. J. Pathol. 2010;176:98–107. doi: 10.2353/ajpath.2010.090283. PubMed DOI PMC
Repertinger S.K., Campagnaro E., Fuhrman J., El-Abaseri T., Yuspa S.H., Hansen L.A. EGFR Enhances Early Healing After Cutaneous Incisional Wounding. J. Invest. Dermatol. 2004;123:982–989. doi: 10.1111/j.0022-202X.2004.23478.x. PubMed DOI
Watterson K.R., Lanning D.A., Diegelmann R.F., Spiegel S. Regulation of fibroblast functions by lysophospholipid mediators: Potential roles in wound healing. Wound Repair Regen. 2007;15:607. doi: 10.1111/j.1524-475X.2007.00292.x. PubMed DOI
Yamada M., Masai H., Bartek J. Regulation and roles of Cdc7 kinase under replication stress. Cell Cycle. 2014;13:1859. doi: 10.4161/cc.29251. PubMed DOI PMC
Nguyen X.X., Muhammad L., Nietert P.J., Feghali-Bostwick C. IGFBP-5 promotes fibrosis via increasing its own expression and that of other pro-fibrotic mediators. Front. Endocrinol. 2018;9 doi: 10.3389/fendo.2018.00601. PubMed DOI PMC
Fragkoudis R., Tamberg N., Siu R., Kiiver K., Kohl A., Merits A., Fazakerley J.K. Neurons and oligodendrocytes in the mouse brain differ in their ability to replicate Semliki Forest virus. J. Neurovirol. 2009;15:57–70. doi: 10.1080/13550280802482583. PubMed DOI
Oliver K.R., Scallan M.F., Dyson H., Fazakerley J.K. Susceptibility to a neurotropic virus and its changing distribution in the developing brain is a function of CNS maturity. J. Neurovirol. 1997;3:38–48. PubMed
Tang H., Hammack C., Ogden S.C., Wen Z., Qian X., Li Y., Yao B., Shin J., Zhang F., Lee E.M., et al. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell. 2016;18:587–590. doi: 10.1016/j.stem.2016.02.016. PubMed DOI PMC
Driskell R.R., Lichtenberger B.M., Hoste E., Kretzschmar K., Simons B.D., Charalambous M., Ferron S.R., Herault Y., Pavlovic G., Ferguson-Smith A.C., Watt F.M. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature. 2013;504:277–281. doi: 10.1038/nature12783. PubMed DOI PMC
Jiang D., Rinkevich Y. Defining skin fibroblastic cell types beyond CD90. Front. Cell Dev. Biol. 2018;6:133. doi: 10.3389/fcell.2018.00133. PubMed DOI PMC
Nazari B., Rice L.M., Stifano G., Barron A.M.S., Wang Y.M., Korndorf T., Lee J., Bhawan J., Lafyatis R., Browning J.L. Altered Dermal Fibroblasts in Systemic Sclerosis Display Podoplanin and CD90. Am. J. Pathol. 2016;186:2650–2664. doi: 10.1016/j.ajpath.2016.06.020. PubMed DOI PMC
Fotakis E.A., Di Maggio E., Del Manso M., Mateo-Urdiales A., Petrone D., Fabiani M., Perego G., Bella A., Bongiorno G., Bernardini I., et al. Human neuroinvasive Toscana virus infections in Italy from 2016 to 2023: Increased incidence in 2022 and 2023. Euro Surveill. 2025;30 doi: 10.2807/1560-7917.ES.2025.30.2.2400203. PubMed DOI PMC
Jaijakul S., Arias C.A., Hossain M., Arduino R.C., Wootton S.H., Hasbun R. Toscana meningoencephalitis: A comparison to other viral central nervous system infections. J. Clin. Virol. 2012;55:204–208. doi: 10.1016/j.jcv.2012.07.007. PubMed DOI PMC
Vilibic-Cavlek T., Zidovec-Lepej S., Ledina D., Knezevic S., Savic V., Tabain I., Ivic I., Slavuljica I., Bogdanic M., Grgic I., et al. Clinical, virological, and immunological findings in patients with toscana neuroinvasive disease in Croatia: Report of three cases. Trop. Med. Infect. Dis. 2020;5 doi: 10.3390/TROPICALMED5030144. PubMed DOI PMC
Cusi M.G., Gandolfo C., Terrosi C., Gori Savellini G., Belmonte G., Miracco C. Toscana virus infects dendritic and endothelial cells opening the way for the central nervous system. J. Neurovirol. 2016;22:307–315. doi: 10.1007/s13365-015-0395-2. PubMed DOI
Quicke K.M., Bowen J.R., Johnson E.L., McDonald C.E., Ma H., O’Neal J.T., Rajakumar A., Wrammert J., Rimawi B.H., Pulendran B., et al. Zika Virus Infects Human Placental Macrophages. Cell Host Microbe. 2016;20:83–90. doi: 10.1016/j.chom.2016.05.015. PubMed DOI PMC
Schmid M.A., Diamond M.S., Harris E. Dendritic cells in dengue virus infection: Targets of virus replication and mediators of immunity. Front. Immunol. 2014;5 doi: 10.3389/fimmu.2014.00647. PubMed DOI PMC
Samuel M.A., Diamond M.S. Pathogenesis of West Nile Virus Infection: a Balance between Virulence, Innate and Adaptive Immunity, and Viral Evasion. J. Virol. 2006;80:9349–9360. doi: 10.1128/jvi.01122-06. PubMed DOI PMC
Kamhawi S., Belkaid Y., Modi G., Rowton E., Sacks D. Protection Against Cutaneous Leishmaniasis Resulting from Bites of Uninfected Sand Flies. Science. 2000;290:1351–1354. doi: 10.1126/science.290.5495.1351. PubMed DOI
Schneider B.S., Soong L., Girard Y.A., Campbell G., Mason P., Higgs S. Potentiation of West Nile Encephalitis by Mosquito Feeding. Viral Immunol. 2006;19:74–82. doi: 10.1089/vim.2006.19.74. PubMed DOI
Visser I., Vaes V., van Run P., Marshall E.M., Vermaat L., Linthout C., Dekkers D.H.W., Demmers J.A.A., Koopmans M.P.G., Koenraadt C.J.M., et al. Effect of mosquito saliva from distinct species on human dermal endothelial cell function in vitro and West Nile virus pathogenesis in vivo. Emerg. Microbes Infect. 2025;14 doi: 10.1080/22221751.2025.2502006. PubMed DOI PMC
Lawyer P., Killick-Kendrick M., Rowland T., Rowton E., Volf P. Laboratory colonization and mass rearing of phlebotomine sand flies (Diptera, Psychodidae) Parasite. 2017;24:42. doi: 10.1051/parasite/2017041. PubMed DOI PMC