Sand fly saliva reprograms skin fibroblasts to enhance arbovirus infection

. 2025 Nov 21 ; 28 (11) : 113854. [epub] 20251025

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41362756
Odkazy

PubMed 41362756
PubMed Central PMC12682282
DOI 10.1016/j.isci.2025.113854
PII: S2589-0042(25)02115-7
Knihovny.cz E-zdroje

Arbovirus transmission by sand flies is a growing public health concern, yet the early skin events shaping infection outcomes remain undefined. We establish a mouse model of Toscana virus (TOSV) infection that incorporates sand fly salivary factors to mimic natural transmission. Saliva from two distinct sand fly genera significantly enhanced infection and promoted neurological signs and joint inflammation, recapitulating key features of human TOSV disease. In the skin, dermal macrophages and fibroblasts were the main infected cell types, but only fibroblasts generated infectious virus. Saliva reprogrammed fibroblasts into a wound-healing state permissive to viral replication, driving local viral amplification, systemic spread, and thereby clinical disease. These findings identify skin fibroblasts as central determinants of host susceptibility and reveal that sand fly saliva actively remodels the skin to exacerbate viral pathogenesis. This work redefines the skin's role in sand fly-transmitted infection and highlights new targets for therapeutic and vaccine development.

Zobrazit více v PubMed

Ayhan N., Eldin C., Charrel R. Toscana virus: A comprehensive review of 1381 cases showing an emerging threat in the Mediterranean regions. J. Infect. 2025;90:106415. doi: 10.1016/j.jinf.2025.106415. PubMed DOI

Gori Savellini G., Gandolfo C., Cusi M.G. Epidemiology of Toscana virus in South Tuscany over the years 2011-2019. J. Clin. Virol. 2020;128 doi: 10.1016/j.jcv.2020.104452. PubMed DOI

Jancarova M., Polanska N., Volf P., Dvorak V. The role of sand flies as vectors of viruses other than phleboviruses. J. Gen. Virol. 2023;104:1–20. doi: 10.1099/jgv.0.001837. PubMed DOI

Maroli M., Feliciangeli M.D., Bichaud L., Charrel R.N., Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med. Vet. Entomol. 2013;27:123–147. doi: 10.1111/j.1365-2915.2012.01034.x. PubMed DOI

Keskek Turk Y., Ergunay K., Kohl A., Hughes J., McKimmie C.S. Toscana virus – an emerging Mediterranean arbovirus transmitted by sand flies. J. Gen. Virol. 2024;105 doi: 10.1099/jgv.0.002045. PubMed DOI PMC

Kuhn J.H., Abe J., Adkins S., Alkhovsky S.V., Avšič-Županc T., Ayllón M.A., Bahl J., Balkema-Buschmann A., Ballinger M.J., Kumar Baranwal V., et al. Annual (2023) taxonomic update of RNA-directed RNA polymerase-encoding negative-sense RNA viruses (realm Riboviria: kingdom Orthornavirae: phylum Negarnaviricota) J. Gen. Virol. 2023;104 doi: 10.1099/jgv.0.001864. PubMed DOI PMC

Charrel R.N., Bichaud L., de Lamballerie X. Emergence of Toscana virus in the mediterranean area. World J. Virol. 2012;1:135–141. doi: 10.5501/wjv.v1.i5.135. PubMed DOI PMC

Charrel R.N., Gallian P., Navarro-Marí J.-M., Nicoletti L., Papa A., Sánchez-Seco M.P., Tenorio A., de Lamballerie X. Emergence of Toscana Virus in Europe. Emerg. Infect. Dis. 2005;11:1657–1663. doi: 10.3201/eid1111.050869. PubMed DOI PMC

Maia C. Sand fly-borne diseases in Europe: epidemiological overview and potential triggers for their emergence and re-emergence. J. Comp. Pathol. 2024;209:6–12. doi: 10.1016/j.jcpa.2024.01.001. PubMed DOI

Dersch R., Sophocleous A., Cadar D., Emmerich P., Schmidt-Chanasit J., Rauer S. Toscana virus encephalitis in Southwest Germany: a retrospective study. BMC Neurol. 2021;21:495. doi: 10.1186/s12883-021-02528-7. PubMed DOI PMC

Pawar N., Seth A.K. Chandipura Virus in India: A Comprehensive Epidemiological Review. J. Vector Borne Dis. 2025 doi: 10.4103/JVBD.JVBD_236_24. PubMed DOI

Conway M.J., Colpitts T.M., Fikrig E. Role of the Vector in Arbovirus Transmission. Annu. Rev. Virol. 2014;1:71–88. doi: 10.1146/annurev-virology-031413-085513. PubMed DOI PMC

Pingen M., Schmid M.A., Harris E., McKimmie C.S. Mosquito Biting Modulates Skin Response to Virus Infection. Trends Parasitol. 2017;33:645–657. doi: 10.1016/j.pt.2017.04.003. PubMed DOI

Edwards J.F., Higgs S., Beaty B.J. Mosquito Feeding-Induced Enhancement of Cache Valley Virus (Bunyaviridae) Infection in Mice. J. Med. Entomol. 1998;35:261–265. doi: 10.1093/jmedent/35.3.261. PubMed DOI

Le Coupanec A., Babin D., Fiette L., Jouvion G., Ave P., Misse D., Bouloy M., Choumet V. Aedes Mosquito Saliva Modulates Rift Valley Fever Virus Pathogenicity. PLoS Negl. Trop. Dis. 2013;7 doi: 10.1371/journal.pntd.0002237. PubMed DOI PMC

Pingen M., Bryden S.R., Pondeville E., Schnettler E., Kohl A., Merits A., Fazakerley J.K., Graham G.J., McKimmie C.S. Host Inflammatory Response to Mosquito Bites Enhances the Severity of Arbovirus Infection. Immunity. 2016;44:1455–1469. doi: 10.1016/j.immuni.2016.06.002. PubMed DOI PMC

Styer L.M., Lim P.-Y., Louie K.L., Albright R.G., Kramer L.D., Bernard K.A. Mosquito Saliva Causes Enhancement of West Nile Virus Infection in Mice. J. Virol. 2011;85:1517–1527. doi: 10.1128/jvi.01112-10. PubMed DOI PMC

Lefteri D.A., Bryden S.R., Pingen M., Terry S., McCafferty A., Beswick E.F., Georgiev G., Van der Laan M., Mastrullo V., Campagnolo P., et al. Mosquito saliva enhances virus infection through sialokinin-dependent vascular leakage. Proc. Natl. Acad. Sci. USA. 2022;119 doi: 10.1073/pnas.2114309119. PubMed DOI PMC

Agarwal A., Joshi G., Nagar D.P., Sharma A.K., Sukumaran D., Pant S.C., Parida M.M., Dash P.K. Mosquito saliva induced cutaneous events augment Chikungunya virus replication and disease progression. Infect. Genet. Evol. 2016;40:126–135. doi: 10.1016/j.meegid.2016.02.033. PubMed DOI

Belkaid Y., Kamhawi S., Modi G., Valenzuela J., Noben-Trauth N., Rowton E., Ribeiro J., Sacks D.L. Development of a Natural Model of Cutaneous Leishmaniasis: Powerful Effects of Vector Saliva and Saliva Preexposure on the Long-Term Outcome of Leishmania major Infection in the Mouse Ear Dermis. J. Exp. Med. 1998;188:1941–1953. doi: 10.1084/jem.188.10.1941. PubMed DOI PMC

Peters N.C., Egen J.G., Secundino N., Debrabant A., Kimblin N., Kamhawi S., Lawyer P., Fay M.P., Germain R.N., Sacks D. In Vivo Imaging Reveals an Essential Role for Neutrophils in Leishmaniasis Transmitted by Sand Flies. Science. 2008;321:970–974. doi: 10.1126/science.1159194. PubMed DOI PMC

Titus R.G., Ribeiro J.M. Salivary Gland Lysates from the Sand Fly Lutzomyia longipalpis Enhance Leishmania Infectivity. Science. 1988;239:1306–1308. doi: 10.1126/science.3344436. PubMed DOI

Cusi M.G., Gori Savellini G., Terrosi C., Di Genova G., Valassina M., Valentini M., Bartolommei S., Miracco C. Development of a mouse model for the study of Toscana virus pathogenesis. Virology. 2005;333:66–73. doi: 10.1016/j.virol.2004.12.025. PubMed DOI

Lazear H.M., Govero J., Smith A.M., Platt D.J., Fernandez E., Miner J.J., Diamond M.S. A Mouse Model of Zika Virus Pathogenesis. Cell Host Microbe. 2016;19:720–730. doi: 10.1016/j.chom.2016.03.010. PubMed DOI PMC

Lestinova T., Rohousova I., Sima M., de Oliveira C.I., Volf P. Insights into the sand fly saliva: Blood-feeding and immune interactions between sand flies, hosts, and Leishmania. PLoS Negl. Trop. Dis. 2017;11 doi: 10.1371/journal.pntd.0005600. PubMed DOI PMC

Dey R., Joshi A.B., Oliveira F., Pereira L., Guimarães-Costa A.B., Serafim T.D., de Castro W., Coutinho-Abreu I.V., Bhattacharya P., Townsend S., et al. Gut Microbes Egested during Bites of Infected Sand Flies Augment Severity of Leishmaniasis via Inflammasome-Derived IL-1β. Cell Host Microbe. 2018;23:134–143.e6. doi: 10.1016/j.chom.2017.12.002. PubMed DOI PMC

Kelly P.H., Bahr S.M., Serafim T.D., Ajami N.J., Petrosino J.F., Meneses C., Kirby J.R., Valenzuela J.G., Kamhawi S., Wilson M.E. The gut microbiome of the vector lutzomyia longipalpis is essential for survival of leishmania infantum. mBio. 2017;8:e01121-16. doi: 10.1128/mBio.01121-16. PubMed DOI PMC

Wang Z., Nie K., Liang Y., Niu J., Yu X., Zhang O., Liu L., Shi X., Wang Y., Feng X., et al. A mosquito salivary protein-driven influx of myeloid cells facilitates flavivirus transmission. EMBO J. 2024;43:1690–1721. doi: 10.1038/s44318-024-00056-x. PubMed DOI PMC

Alexander A.J.T., Confort M.P., Desloire S., Dunlop J.I., Kuchi S., Sreenu V.B., Mair D., Wilkie G.S., da Silva Filipe A., Brennan B., et al. Development of a reverse genetics system for Toscana virus (Lineage A) Viruses. 2020;12:411–415. doi: 10.3390/v12040411. PubMed DOI PMC

Jiang D., Guo R., Machens H.G., Rinkevich Y. Diversity of Fibroblasts and Their Roles in Wound Healing. Cold Spring Harb. Perspect. Biol. 2023;15 doi: 10.1101/cshperspect.a041222. PubMed DOI PMC

Plikus M.V., Wang X., Sinha S., Forte E., Thompson S.M., Herzog E.L., Driskell R.R., Rosenthal N., Biernaskie J., Horsley V. Fibroblasts: Origins, definitions, and functions in health and disease. Cell. 2021;184:3852–3872. doi: 10.1016/j.cell.2021.06.024. PubMed DOI PMC

Bautista-Hernández L.A., Gómez-Olivares J.L., Buentello-Volante B., Bautista-de Lucio V.M. Fibroblasts: the unknown sentinels eliciting immune responses against microorganisms. Eur. J. Microbiol. Immunol. 2017;7:151–157. doi: 10.1556/1886.2017.00009. PubMed DOI PMC

Rong L., Liu J., Qi Y., Graham A.M., Parmacek M.S., Li S. GATA-6 promotes cell survival by up-regulating BMP-2 expression during embryonic stem cell differentiation. Mol. Biol. Cell. 2012;23:3754–3763. doi: 10.1091/mbc.E12-04-0313. PubMed DOI PMC

Saito S., Kitabatake M., Ouji-Sageshima N., Ogawa T., Oda A., Nishimura T., Nishioka T., Fushimi S., Hara A., Shichino S., et al. Angiopoietin-like 4 Is a Critical Regulator of Fibroblasts during Pulmonary Fibrosis Development. Am. J. Respir. Cell Mol. Biol. 2023;69:328–339. doi: 10.1165/rcmb.2022-0304oc. PubMed DOI

Ushakumary M.G., Green J., Riccetti M.R., Na C.-L., Mohanraj D., Guo M., Perl A.-K.T. Matrix fibroblast function during alveolarization is dependent on GATA6. 2022. DOI

Zhang H., Qiu J., Zhao Q., Zhang Y., Zheng H., Dou Z., Yan Y. Tanshinone IIA alleviates bleomycin-induced pulmonary fibrosis by inhibiting Zbtb16. Pulm. Pharmacol. Ther. 2024;84 doi: 10.1016/j.pupt.2024.102285. PubMed DOI

Bielli A., Scioli M.G., D’Amico F., Tarquini C., Agostinelli S., Costanza G., Doldo E., Campione E., Passeri D., Coniglione F., Orlandi A. Cellular retinoic acid binding protein-II expression and its potential role in skin aging. Aging. 2019;11:1619–1632. doi: 10.18632/aging.101813. PubMed DOI PMC

Martinez-Ferrer M., Afshar-Sherif A.R., Uwamariya C., De Crombrugghe B., Davidson J.M., Bhowmick N.A. Dermal transforming growth factor-β responsiveness mediates wound contraction and epithelial closure. Am. J. Pathol. 2010;176:98–107. doi: 10.2353/ajpath.2010.090283. PubMed DOI PMC

Repertinger S.K., Campagnaro E., Fuhrman J., El-Abaseri T., Yuspa S.H., Hansen L.A. EGFR Enhances Early Healing After Cutaneous Incisional Wounding. J. Invest. Dermatol. 2004;123:982–989. doi: 10.1111/j.0022-202X.2004.23478.x. PubMed DOI

Watterson K.R., Lanning D.A., Diegelmann R.F., Spiegel S. Regulation of fibroblast functions by lysophospholipid mediators: Potential roles in wound healing. Wound Repair Regen. 2007;15:607. doi: 10.1111/j.1524-475X.2007.00292.x. PubMed DOI

Yamada M., Masai H., Bartek J. Regulation and roles of Cdc7 kinase under replication stress. Cell Cycle. 2014;13:1859. doi: 10.4161/cc.29251. PubMed DOI PMC

Nguyen X.X., Muhammad L., Nietert P.J., Feghali-Bostwick C. IGFBP-5 promotes fibrosis via increasing its own expression and that of other pro-fibrotic mediators. Front. Endocrinol. 2018;9 doi: 10.3389/fendo.2018.00601. PubMed DOI PMC

Fragkoudis R., Tamberg N., Siu R., Kiiver K., Kohl A., Merits A., Fazakerley J.K. Neurons and oligodendrocytes in the mouse brain differ in their ability to replicate Semliki Forest virus. J. Neurovirol. 2009;15:57–70. doi: 10.1080/13550280802482583. PubMed DOI

Oliver K.R., Scallan M.F., Dyson H., Fazakerley J.K. Susceptibility to a neurotropic virus and its changing distribution in the developing brain is a function of CNS maturity. J. Neurovirol. 1997;3:38–48. PubMed

Tang H., Hammack C., Ogden S.C., Wen Z., Qian X., Li Y., Yao B., Shin J., Zhang F., Lee E.M., et al. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell. 2016;18:587–590. doi: 10.1016/j.stem.2016.02.016. PubMed DOI PMC

Driskell R.R., Lichtenberger B.M., Hoste E., Kretzschmar K., Simons B.D., Charalambous M., Ferron S.R., Herault Y., Pavlovic G., Ferguson-Smith A.C., Watt F.M. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature. 2013;504:277–281. doi: 10.1038/nature12783. PubMed DOI PMC

Jiang D., Rinkevich Y. Defining skin fibroblastic cell types beyond CD90. Front. Cell Dev. Biol. 2018;6:133. doi: 10.3389/fcell.2018.00133. PubMed DOI PMC

Nazari B., Rice L.M., Stifano G., Barron A.M.S., Wang Y.M., Korndorf T., Lee J., Bhawan J., Lafyatis R., Browning J.L. Altered Dermal Fibroblasts in Systemic Sclerosis Display Podoplanin and CD90. Am. J. Pathol. 2016;186:2650–2664. doi: 10.1016/j.ajpath.2016.06.020. PubMed DOI PMC

Fotakis E.A., Di Maggio E., Del Manso M., Mateo-Urdiales A., Petrone D., Fabiani M., Perego G., Bella A., Bongiorno G., Bernardini I., et al. Human neuroinvasive Toscana virus infections in Italy from 2016 to 2023: Increased incidence in 2022 and 2023. Euro Surveill. 2025;30 doi: 10.2807/1560-7917.ES.2025.30.2.2400203. PubMed DOI PMC

Jaijakul S., Arias C.A., Hossain M., Arduino R.C., Wootton S.H., Hasbun R. Toscana meningoencephalitis: A comparison to other viral central nervous system infections. J. Clin. Virol. 2012;55:204–208. doi: 10.1016/j.jcv.2012.07.007. PubMed DOI PMC

Vilibic-Cavlek T., Zidovec-Lepej S., Ledina D., Knezevic S., Savic V., Tabain I., Ivic I., Slavuljica I., Bogdanic M., Grgic I., et al. Clinical, virological, and immunological findings in patients with toscana neuroinvasive disease in Croatia: Report of three cases. Trop. Med. Infect. Dis. 2020;5 doi: 10.3390/TROPICALMED5030144. PubMed DOI PMC

Cusi M.G., Gandolfo C., Terrosi C., Gori Savellini G., Belmonte G., Miracco C. Toscana virus infects dendritic and endothelial cells opening the way for the central nervous system. J. Neurovirol. 2016;22:307–315. doi: 10.1007/s13365-015-0395-2. PubMed DOI

Quicke K.M., Bowen J.R., Johnson E.L., McDonald C.E., Ma H., O’Neal J.T., Rajakumar A., Wrammert J., Rimawi B.H., Pulendran B., et al. Zika Virus Infects Human Placental Macrophages. Cell Host Microbe. 2016;20:83–90. doi: 10.1016/j.chom.2016.05.015. PubMed DOI PMC

Schmid M.A., Diamond M.S., Harris E. Dendritic cells in dengue virus infection: Targets of virus replication and mediators of immunity. Front. Immunol. 2014;5 doi: 10.3389/fimmu.2014.00647. PubMed DOI PMC

Samuel M.A., Diamond M.S. Pathogenesis of West Nile Virus Infection: a Balance between Virulence, Innate and Adaptive Immunity, and Viral Evasion. J. Virol. 2006;80:9349–9360. doi: 10.1128/jvi.01122-06. PubMed DOI PMC

Kamhawi S., Belkaid Y., Modi G., Rowton E., Sacks D. Protection Against Cutaneous Leishmaniasis Resulting from Bites of Uninfected Sand Flies. Science. 2000;290:1351–1354. doi: 10.1126/science.290.5495.1351. PubMed DOI

Schneider B.S., Soong L., Girard Y.A., Campbell G., Mason P., Higgs S. Potentiation of West Nile Encephalitis by Mosquito Feeding. Viral Immunol. 2006;19:74–82. doi: 10.1089/vim.2006.19.74. PubMed DOI

Visser I., Vaes V., van Run P., Marshall E.M., Vermaat L., Linthout C., Dekkers D.H.W., Demmers J.A.A., Koopmans M.P.G., Koenraadt C.J.M., et al. Effect of mosquito saliva from distinct species on human dermal endothelial cell function in vitro and West Nile virus pathogenesis in vivo. Emerg. Microbes Infect. 2025;14 doi: 10.1080/22221751.2025.2502006. PubMed DOI PMC

Lawyer P., Killick-Kendrick M., Rowland T., Rowton E., Volf P. Laboratory colonization and mass rearing of phlebotomine sand flies (Diptera, Psychodidae) Parasite. 2017;24:42. doi: 10.1051/parasite/2017041. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...