Phlebotomus perniciosus Recombinant Salivary Proteins Polarize Murine Macrophages Toward the Anti-Inflammatory Phenotype
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32984064
PubMed Central
PMC7476311
DOI
10.3389/fcimb.2020.00427
Knihovny.cz E-zdroje
- Klíčová slova
- Phlebotomus, apyrase, immunogenicity, macrophage polarization, sand fly saliva, yellow-related proteins,
- MeSH
- antiflogistika MeSH
- fenotyp MeSH
- makrofágy MeSH
- myši MeSH
- Phlebotomus * MeSH
- psi MeSH
- rekombinantní proteiny MeSH
- slinné proteiny a peptidy MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antiflogistika MeSH
- rekombinantní proteiny MeSH
- slinné proteiny a peptidy MeSH
Phlebotomus perniciosus (Diptera: Phlebotominae) is a medically and veterinary important insect vector. It transmits the unicellular parasite Leishmania infantum that multiplies intracellularly in macrophages causing life-threatening visceral diseases. Leishmania establishment in the vertebrate host is substantially influenced by immunomodulatory properties of vector saliva that are obligatorily co-injected into the feeding site. The repertoire of P. perniciosus salivary molecules has already been revealed and, subsequently, several salivary proteins have been expressed. However, their immunogenic properties have never been studied. In our study, we tested three P. perniciosus recombinant salivary proteins-an apyrase rSP01 and yellow-related proteins rSP03 and rSP03B-and showed their anti-inflammatory nature on the murine bone-marrow derived macrophages. Even in the presence of pro-inflammatory stimuli (IFN-γ and bacterial lipopolysaccharide, LPS), all three recombinant proteins inhibited nitric oxide production. Moreover, rSP03 seems to have a very strong anti-inflammatory effect since it enhanced arginase activity, increased the production of IL-10, and inhibited the production of TNF-α even in macrophages stimulated with IFN-γ and LPS. These results suggest that P. perniciosus apyrase and yellow-related proteins may serve as enhancing factors in sand fly saliva, facilitating the development of Leishmania infection along with their anti-haemostatic properties. Additionally, rSP03 and rSP03B did not elicit the delayed-type hypersensitivity response in mice pre-exposed to P. perniciosus bites (measured as visible skin reaction). The results of our study may help to understand the potential function of recombinant's native counterparts and their role in Leishmania transmission and establishment within the host.
Zobrazit více v PubMed
Abbehusen M. M. C., Cunha J., Suarez M. S., Teixeira C., Dos Anjos Almeida V., Da Silva Pereira L., et al. . (2018). Immunization of experimental dogs with salivary proteins from Lutzomyia longipalpis, using DNA and recombinant canarypox virus induces immune responses consistent with protection against Leishmania infantum. Front. Immunol. 9:2558. 10.3389/fimmu.2018.02558 PubMed DOI PMC
Anderson J. M., Oliveira F., Kamhawi S., Mans B. J., Reynoso D., Seitz A. E., et al. . (2006). Comparative salivary gland transcriptomics of sandfly vectors of visceral leishmaniasis. BMC Genomics 7:52. 10.1186/1471-2164-7-52 PubMed DOI PMC
Blaha J., Pachl P., Novak P., Vanek O. (2015). Expression and purification of soluble and stable ectodomain of natural killer cell receptor LLT1 through high-density transfection of suspension adapted HEK293S GnTI− cells. Protein Expr. Purif. 109, 7–13. 10.1016/j.pep.2015.01.006 PubMed DOI
Burnham A. C., Ordeix L., Alcover M. M., Martinez-Orellana P., Montserrat-Sangra S., Willen L., et al. . (2020). Exploring the relationship between susceptibility to canine leishmaniosis and anti-Phlebotomus perniciosus saliva antibodies in Ibizan hounds and dogs of other breeds in Mallorca, Spain. Parasit. Vectors 13:129. 10.1186/s13071-020-3992-8 PubMed DOI PMC
Collin N., Gomes R., Teixeira C., Cheng L., Laughinghouse A., Ward J. M., et al. . (2009). Sand fly salivary proteins induce strong cellular immunity in a natural reservoir of visceral leishmaniasis with adverse consequences for Leishmania. PLoS Pathog. 5:e1000441. 10.1371/journal.ppat.1000441 PubMed DOI PMC
Coutinho-Abreu I. V., Valenzuela J. G. (2018). Comparative evolution of sand fly salivary protein families and implications for biomarkers of vector exposure and salivary vaccine candidates. Front. Cell. Infect. Microbiol. 8:290. 10.3389/fcimb.2018.00290 PubMed DOI PMC
Cunha J. M., Abbehusen M., Suarez M., Valenzuela J., Teixeira C. R., Brodskyn C. I. (2018). Immunization with LJM11 salivary protein protects against infection with Leishmania braziliensis in the presence of Lutzomyia longipalpis saliva. Acta Trop. 177, 164–170. 10.1016/j.actatropica.2017.10.009 PubMed DOI PMC
Drahota J., Lipoldova M., Volf P., Rohousova I. (2009). Specificity of anti-saliva immune response in mice repeatedly bitten by Phlebotomus sergenti. Parasite Immunol. 31, 766–770. 10.1111/j.1365-3024.2009.01155.x PubMed DOI
Drahota J., Martin-Martin I., Sumova P., Rohousova I., Jimenez M., Molina R., et al. . (2014). Recombinant antigens from Phlebotomus perniciosus saliva as markers of canine exposure to visceral leishmaniases vector. PLoS Negl. Trop. Dis. 8:45. 10.1371/journal.pntd.0002597 PubMed DOI PMC
Francischetti I. M. B. (2011). Platelet aggregation Inhibitors from Hametophagous Animals. Toxicon 56, 1130–1144. 10.1016/j.toxicon.2009.12.003.Platelet PubMed DOI PMC
Gholami E., Oliveira F., Taheri T., Seyed N., Gharibzadeh S., Gholami N., et al. . (2019). DNA plasmid coding for Phlebotomus sergenti salivary protein PsSP9, a member of the SP15 family of proteins, protects against Leishmania tropica. PLoS Negl. Trop. Dis. 13:e0007067. 10.1371/journal.pntd.0007067 PubMed DOI PMC
Gomes R., Oliveira F., Teixeira C., Meneses C., Gilmore D. C., Elnaiem D. E., et al. . (2012). Immunity to sand fly salivary protein LJM11 modulates host response to vector-transmitted leishmania conferring ulcer-free protection. J. Invest. Dermatol. 132, 2735–2743. 10.1038/jid.2012.205 PubMed DOI PMC
Gomes R., Teixeira C., Teixeira M. J., Oliveira F., Menezes M. J., Silva C., et al. . (2008). Immunity to a salivary protein of a sand fly vector protects against the fatal outcome of visceral leishmaniasis in a hamster model. Proc. Natl. Acad. Sci. U.S.A. 105, 7845–7850. 10.1073/pnas.0712153105 PubMed DOI PMC
Kostalova T., Lestinova T., Maia C., Sumova P., Vlkova M., Willen L., et al. . (2017). The recombinant protein rSP03B is a valid antigen for screening dog exposure to Phlebotomus perniciosus across foci of canine leishmaniasis. Med. Vet. Entomol. 31, 88–93. 10.1111/mve.12192 PubMed DOI
Kostalova T., Lestinova T., Sumova P., Vlkova M., Rohousova I., Berriatua E., et al. . (2015). Canine antibodies against salivary recombinant proteins of Phlebotomus perniciosus: A longitudinal study in an endemic focus of canine leishmaniasis. PLoS Negl. Trop. Dis. 9:e0003855. 10.1371/journal.pntd.0003855 PubMed DOI PMC
Kropf P., Baud D., Marshall S. E., Munder M., Mosley A., Fuentes J. M., et al. . (2007). Arginase activity mediates reversible T cell hyporesponsiveness in human pregnancy. Eur. J. Immunol. 37, 935–945. 10.1002/eji.200636542 PubMed DOI PMC
Lestinova T., Rohousova I., Sima M., de Oliveira C. I., Volf P. (2017). Insights into the sand fly saliva: Blood-feeding and immune interactions between sand flies, hosts, and Leishmania. PLoS Negl. Trop. Dis. 11:e0005600. 10.1371/journal.pntd.0005600 PubMed DOI PMC
Maia C., Cristóvão J., Pereira A., Kostalova T., Lestinova T., Sumova P., et al. . (2020). Monitoring Leishmania infection and exposure to Phlebotomus perniciosus using minimal and non-invasive canine samples. Parasit. Vectors 13:119. 10.1186/s13071-020-3993-7 PubMed DOI PMC
Maroli M., Feliciangeli M. D., Bichaud L., Charrel R. N., Gradoni L. (2013). Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med. Vet. Entomol. 27, 123–147. 10.1111/j.1365-2915.2012.01034.x PubMed DOI
Martin-Martin I., Molina R., Jimenez M. (2012). An insight into the Phlebotomus perniciosus saliva by a proteomic approach. Acta Trop. 123, 22–30. 10.1016/j.actatropica.2012.03.003 PubMed DOI
Martin-Martin I., Molina R., Jimenez M. (2013). Molecular and immunogenic properties of apyrase SP01B and D7-related SP04 recombinant salivary proteins of Phlebotomus perniciosus from Madrid, Spain. Biomed Res. Int. 2013:526069. 10.1155/2013/526069 PubMed DOI PMC
Martin-Martin I., Molina R., Jimenez M. (2015). Kinetics of anti-Phlebotomus perniciosus saliva antibodies in experimentally bitten mice and rabbits. PLoS ONE 10:e0140722. 10.1371/journal.pone.0140722 PubMed DOI PMC
Martin-Martin I., Molina R., Rohousova I., Drahota J., Volf P., Jimenez M. (2014). High levels of anti-Phlebotomus perniciosus saliva antibodies in different vertebrate hosts from the re-emerging leishmaniosis focus in Madrid, Spain. Vet. Parasitol. 202, 207–216. 10.1016/j.vetpar.2014.02.045 PubMed DOI
Marzouki S., Abdeladhim M., Abdessalem C., Ben O.liveira, F., Ferjani B., Gilmore D., et al. . (2012). Salivary Antigen SP32 Is the Immunodominant Target of the Antibody Response to Phlebotomus papatasi Bites in Humans. PLoS Negl. Trop. Dis. 6:e1911. 10.1371/journal.pntd.0001911 PubMed DOI PMC
Oliveira F., Giorgobiani E., Guimaraes-Costa A. B., Abdeladhim M., Oristian J., Tskhvaradze L., et al. . (2020). Immunity to vector saliva is compromised by short sand fly seasons in endemic regions with temperate climates. Sci. Rep. 10:7990. 10.1038/s41598-020-64820-9 PubMed DOI PMC
Oliveira F., Kamhawi S., Seitz A. E., Pham V. M., Guigal P. M., Fischer L., et al. . (2006). From transcriptome to immunome: Identification of DTH inducing proteins from a Phlebotomus ariasi salivary gland cDNA library. Vaccine 24, 374–390. 10.1016/j.vaccine.2005.07.085 PubMed DOI
Oliveira F., Lawyer P. G., Kamhawi S., Valenzuela J. G. (2008). Immunity to distinct sand fly salivary proteins primes the anti-Leishmania immune response towards protection or exacerbation of disease. PLoS Negl. Trop. Dis. 2:e226. 10.1371/journal.pntd.0000226 PubMed DOI PMC
Oliveira F., Rowton E., Aslan H., Gomes R., Castrovinci P. A., Alvarenga P. H., et al. . (2015). A sand fly salivary protein vaccine shows efficacy against vector-transmitted cutaneous leishmaniasis in nonhuman primates. Sci. Transl. Med. 7:290ra90. 10.1126/scitranslmed.aaa3043 PubMed DOI
Polanska N., Ishemgulova A., Volfova V., Flegontov P., Votypka J., Yurchenko V., et al. . (2020). Sergentomyia schwetzi: Salivary gland transcriptome, proteome and enzymatic activities in two lineages adapted to different blood sources. PLoS ONE 15:e0230537. 10.1371/journal.pone.0230537 PubMed DOI PMC
Qian Y., Culton D. A., Jeong J. S., Trupiano N., Valenzuela J. G., Diaz L. A. (2016). Non-infectious Environmental Antigens as a Trigger for the Initiation of an Autoimmune Skin Disease. Autoimmun. Rev. 15, 923–930. 10.1016/j.autrev.2016.07.005 PubMed DOI PMC
Reagan K. L., Machain-Williams C., Wang T., Blair C. D. (2012). Immunization of Mice with Recombinant Mosquito Salivary Protein D7 Enhances Mortality from Subsequent West Nile Virus Infection via Mosquito Bite. PLoS Negl. Trop. Dis. 6:e1935. 10.1371/journal.pntd.0001935 PubMed DOI PMC
Risueno J., Spitzova T., Bernal L. J., Munoz C., Lopez M. C., Thomas M. C., et al. . (2019). Longitudinal monitoring of anti-saliva antibodies as markers of repellent efficacy against Phlebotomus perniciosus and Phlebotomus papatasi in dogs. Med. Vet. Entomol. 33, 99–109. 10.1111/mve.12343 PubMed DOI
Rohousova I., Volf P., Lipoldova M. (2005). Modulation of murine cellular immune response and cytokine production by salivary gland lysate of three sand fly species. Parasite Immunol. 27, 469–473. 10.1111/j.1365-3024.2005.00787.x PubMed DOI
Schwarz H., Schmittner M., Duschl A., Horejs-Hoeck J. (2014). Residual endotoxin contaminations in recombinant proteins are sufficient to activate human CD1c+ dendritic cells. PLoS ONE 9:e113840. 10.1371/journal.pone.0113840 PubMed DOI PMC
Shapouri-Moghaddam A., Mohammadian S., Vazini H., Taghadosi M., Esmaeili S. A., Mardani F., et al. . (2018). Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 233, 6425–6440. 10.1002/jcp.26429 PubMed DOI
Sumova P., Sima M., Kalouskova B., Polanska N., Vanek O., Oliveira F., et al. . (2019). Amine-binding properties of salivary yellow-related proteins in phlebotomine sand flies. Insect Biochem. Mol. Biol. 115:103245. 10.1016/j.ibmb.2019.103245 PubMed DOI
Tlili A., Marzouki S., Chabaane E., Abdeladhim M., Kammoun-Rebai W., Sakkouhi R., et al. . (2018). Phlebotomus papatasi Yellow-Related and Apyrase Salivary Proteins Are Candidates for Vaccination against Human Cutaneous Leishmaniasis. J. Invest. Dermatol. 138, 598–606. 10.1016/j.jid.2017.09.043 PubMed DOI PMC
Tomiotto-Pellissier F., Bortoleti B. T. D. S., Assolini J. P., Goncalves M. D., Carloto A. C. M., Miranda-Sapla M. M., et al. . (2018). Macrophage Polarization in Leishmaniasis: Broadening Horizons. Front. Immunol. 9:2529. 10.3389/fimmu.2018.02529 PubMed DOI PMC
Velez R., Spitzova T., Domenech E., Willen L., Cairo J., Volf P., et al. . (2018). Seasonal dynamics of canine antibody response to Phlebotomus perniciosus saliva in an endemic area of Leishmania infantum. Parasit. Vectors 11:545. 10.1186/s13071-018-3123-y PubMed DOI PMC
Vlkova M., Rohousova I., Drahota J., Stanneck D., Kruedewagen E. M., Mencke N., et al. . (2011). Canine antibody response to Phlebotomus perniciosus bites negatively correlates with the risk of Leishmania infantum transmission. PLoS Negl. Trop. Dis. 5:e1344. 10.1371/journal.pntd.0001344 PubMed DOI PMC
Volf P., Volfova V. (2011). Establishment and maintenance of sand fly colonies. J. Vector Ecol. 36, S1–S9. 10.1111/j.1948-7134.2011.00106.x PubMed DOI
Willen L., Lestinova T., Kalouskova B., Sumova P., Spitzova T., Velez R., et al. . (2019). Field study of the improved rapid sand fly exposure test in areas endemic for canine leishmaniasis. PLoS Negl. Trop. Dis. 13:e0007832. 10.1371/journal.pntd.0007832 PubMed DOI PMC
Willen L., Mertens P., Volf P. (2018). Evaluation of the rSP03B sero-strip, a newly proposed rapid test for canine exposure to Phlebotomus perniciosus, vector of Leishmania infantum. PLoS Negl. Trop. Dis. 12:e0006607. 10.1371/journal.pntd.0006607 PubMed DOI PMC
Xu X., Oliveira F., Chang B. W., Collin N., Gomes R., Teixeira C., et al. . (2011). Structure and function of a “yellow” protein from saliva of the sand fly Lutzomyia longipalpis that confers protective immunity against Leishmania major infection. J. Biol. Chem. 286, 32383–32393. 10.1074/jbc.M111.268904 PubMed DOI PMC