apyrase Dotaz Zobrazit nápovědu
Current knowledge of sand fly salivary components has been based solely on Lutzomyia and Phlebotomus species which feed mainly on mammals; their hyaluronidases and apyrases were demonstrated to significantly affect blood meal intake and transmission of vector-borne pathogens. Members of the third sand fly genus Sergentomyia preferentially feed on reptiles but some of them are considered as Leishmania and arboviruses vectors; however, nothing is known about their salivary components that might be relevant for pathogens transmission. Here, marked hyaluronidase and apyrase activities were demonstrated in the saliva of a Sergentomyia schwetzi colony maintained on geckos. Hyaluronidase of S. schwetzi cleaved hyaluronan as the prominent substrate, and was active over a broad pH range from 4.0 to 8.0, with a sharp peak at pH 5.0. SDS PAGE zymography demonstrated the monomeric character of the enzyme, which remained active in reducing conditions. The apparent molecular weight of 43 kDa was substantially lower than in any sand fly species tested so far and may indicate relatively low grade of the glycosylation of the enzyme. The apyrase of S. schwetzi was typical strictly Ca2+ dependent Cimex-family apyrase. It was active over a pH range from 6.5 to 9.0, with a peak of activity at pH 8.5, and had an ATPase/ADPase ratio of 0.9. The apyrase activity increased during the first 3 days post-emergence, then reached a plateau and remained relatively constant until day 8. In comparison with a majority of Phlebotomus and Lutzomyia species tested to date, both the hyaluronidase and apyrase activities of S. schwetzi were relatively low, which may reflect an adaptation of this sand fly to blood feeding on non-mammalian hosts.
- MeSH
- glykosylace MeSH
- hmyzí proteiny chemie genetika metabolismus MeSH
- hyaluronoglukosaminidasa chemie metabolismus MeSH
- Psychodidae enzymologie genetika MeSH
- slinné proteiny a peptidy chemie genetika metabolismus MeSH
- stabilita enzymů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Ecto-5'-nucleotidases are glycosyl phosphatidylinositol (GPI)-linked membrane-bound glycoproteins that convert extracellular AMP to adenosine. They play important roles in the inflammatory response where they modulate levels of pro-inflammatory extracellular ATP and anti-inflammatory extracellular adenosine. They are found in the saliva of blood feeding insects and also have a role in male reproduction. Drosophila possesses five genes with eight alternative transcripts encoding proteins with sequence homology to mammalian ecto-5'-nucleotidases. Here we show that two of them - NT5E-1 (CG4827) and NT5E-2 (CG30104) - are GPI-linked proteins with ecto-5'-nucleotidase activity but that they can also be released from the GPI anchor and exhibit secreted 5'-nucleotidase activity in growth media. The third locus in the cluster, CG30103, most likely also encodes a GPI-anchored membrane-bound protein but without 5'-nucleotidase activity, possibly due to the numerous substitutions in the amino acid sequence. Together with NT5E-2, CG30103 is also expressed in the testis offering an interesting model to investigate ecto-5'-nucleotidase enzymatic and extra-enzymatic function in male reproduction. CG42249 locus encoding two alternative transcripts is sequentially similar to family of apyrases related to 5'-nucleotidases and we show here that together with CG5276 belonging to another family of calcium-activated nucleotidases function as apyrases converting extracellular ATP to ADP and AMP. The last locus, CG11883, encodes most likely a cytoplasmic/mitochondrial protein.
- MeSH
- 5'-nukleotidasa genetika metabolismus MeSH
- apyrasa genetika metabolismus MeSH
- buněčné linie MeSH
- Drosophila melanogaster enzymologie genetika MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- multigenová rodina MeSH
- proteiny Drosophily genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
During the blood feeding, sand fly females inject saliva containing immunomodulatory and anti-haemostatic molecules into their vertebrate hosts. The saliva composition is species-specific, likely due to an adaptation to particular haemostatic pathways of their preferred host. Research on sand fly saliva is limited to the representatives of two best-studied genera, Phlebotomus and Lutzomyia. Although the members of the genus Sergentomyia are highly abundant in many areas in the Old World, their role in human disease transmission remains uncertain. Most Sergentomyia spp. preferentially attack various species of reptiles, but feeding on warm-blooded vertebrates, including humans and domestic animals, has been repeatedly described, especially for Sergentomyia schwetzi, of which salivary gland transcriptome and proteome is analyzed in the current study. Illumina RNA sequencing and de novo assembly of the reads and their annotation revealed 17,293 sequences homologous to other arthropods' proteins. In the sialome, all proteins typical for sand fly saliva were identified-antigen 5-related, lufaxin, yellow-related, PpSP15-like, D7-related, ParSP25-like, and silk proteins, as well as less frequent salivary proteins included 71kDa-like, ParSP80-like, SP16-like, and ParSP17-like proteins. Salivary enzymes include apyrase, hyaluronidase, endonuclease, amylase, lipase A2, adenosine deaminase, pyrophosphatase, 5'nucleotidase, and ribonuclease. Proteomics analysis of salivary glands identified 631 proteins, 81 of which are likely secreted into the saliva. We also compared two S. schwetzi lineages derived from the same origin. These lineages were adapted for over 40 generations for blood feeding either on mice (S-M) or geckos (S-G), two vertebrate hosts with different haemostatic mechanisms. Altogether, 20 and 40 annotated salivary transcripts were up-regulated in the S-M and S-G lineage, respectively. Proteomic comparison revealed ten salivary proteins more abundant in the lineage S-M, whereas 66 salivary proteins were enriched in the lineage S-G. No difference between lineages was found for apyrase activity; contrarily the hyaluronidase activity was significantly higher in the lineage feeding on mice.
- MeSH
- apyrasa analýza genetika metabolismus MeSH
- fylogeneze MeSH
- hmyzí proteiny analýza genetika metabolismus MeSH
- hyaluronoglukosaminidasa analýza genetika metabolismus MeSH
- ještěři MeSH
- myši MeSH
- Psychodidae genetika metabolismus MeSH
- receptory pachové analýza genetika metabolismus MeSH
- slinné žlázy metabolismus MeSH
- transkriptom * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Wyd. 1. 185 s. : il., tab., grafy ; 20 cm
- MeSH
- apyrasa MeSH
- biochemie MeSH
- hydrolasy působící na anhydridy kyselin MeSH
- Publikační typ
- vysokoškolské kvalifikační práce MeSH
- Konspekt
- Biochemie. Molekulární biologie. Biofyzika
- NLK Obory
- biochemie
Multiple sclerosis (MS) is a highly disabling, progressive neurodegenerative disease with no curative treatment available. Although significant progress has been made in understanding how MS develops, there remain aspects of disease pathogenesis that are yet to be fully elucidated. In this regard, studies have shown that dysfunctional adenosinergic signaling plays a pivotal role, as patients with MS have altered levels adenosine (ADO), adenosine receptors and proteins involved in the generation and termination of ADO signaling, such as CD39 and adenosine deaminase (ADA). We have therefore performed a literature review regarding the involvement of the adenosinergic system in the development of MS and propose mechanisms by which the modulation of this system can support drug development and repurposing.
- MeSH
- adenosin imunologie MeSH
- adenosindeaminasa imunologie MeSH
- apyrasa imunologie MeSH
- lidé MeSH
- neurodegenerativní nemoci * etiologie imunologie terapie MeSH
- purinergní receptory P1 * imunologie MeSH
- roztroušená skleróza * etiologie imunologie terapie MeSH
- signální transdukce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- MeSH
- aktivace trombocytů fyziologie MeSH
- Apicomplexa parazitologie patogenita MeSH
- apyrasa farmakologie MeSH
- hemostáza * fyziologie MeSH
- inhibitory koagulačních faktorů * klasifikace MeSH
- interakce hostitele a parazita MeSH
- klíšťata klasifikace MeSH
- klíště * enzymologie parazitologie patogenita MeSH
- klíšťová encefalitida klasifikace parazitologie MeSH
- kousnutí klíštětem komplikace krev MeSH
- lidé MeSH
- lymeská nemoc etiologie parazitologie MeSH
- prostaglandiny farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
BACKGROUND: Simulium damnosum sensu lato (s.l.) blackflies transmit Onchocerca volvulus, a filarial nematode that causes human onchocerciasis. Human landing catches (HLCs) is currently the sole method used to estimate blackfly biting rates but is labour-intensive and questionable on ethical grounds. A potential alternative is to measure host antibodies to vector saliva deposited during bloodfeeding. In this study, immunoassays to quantify human antibody responses to S. damnosum s.l. saliva were developed, and the salivary proteome of S. damnosum s.l. was investigated. METHODOLOGY/PRINCIPAL FINDINGS: Blood samples from people living in onchocerciasis-endemic areas in Ghana were collected during the wet season; samples from people living in Accra, a blackfly-free area, were considered negative controls and compared to samples from blackfly-free locations in Sudan. Blackflies were collected by HLCs and dissected to extract their salivary glands. An ELISA measuring anti-S. damnosum s.l. salivary IgG and IgM was optimized and used to quantify the humoral immune response of 958 individuals. Both immunoassays differentiated negative controls from endemic participants. Salivary proteins were separated by gel-electrophoresis, and antigenic proteins visualized by immunoblot. Liquid chromatography mass spectrometry (LC-MS/MS) was performed to characterize the proteome of S. damnosum s.l. salivary glands. Several antigenic proteins were recognized, with the major ones located around 15 and 40 kDa. LC-MS/MS identified the presence of antigen 5-related protein, apyrase/nucleotidase, and hyaluronidase. CONCLUSIONS/SIGNIFICANCE: This study validated for the first time human immunoassays that quantify humoral immune responses as potential markers of exposure to blackfly bites. These assays have the potential to facilitate understanding patterns of exposure as well as evaluating the impact of vector control on biting rates. Future studies need to investigate seasonal fluctuations of these antibody responses, potential cross-reactions with other bloodsucking arthropods, and thoroughly identify the most immunogenic proteins.
- MeSH
- dítě MeSH
- dospělí MeSH
- ELISA MeSH
- hmyz - vektory fyziologie MeSH
- imunoglobulin G krev MeSH
- imunoglobulin M krev MeSH
- kousnutí a bodnutí hmyzem epidemiologie imunologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- onchocerkóza MeSH
- předškolní dítě MeSH
- senioři MeSH
- Simuliidae fyziologie MeSH
- sliny * MeSH
- zvířata MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- senioři MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Ghana MeSH
- Súdán MeSH
BACKGROUND: Certain salivary proteins of phlebotomine sand flies injected into the host skin during blood-feeding are highly antigenic and elicit strong antibody-mediated immune responses in repeatedly-exposed hosts. These antibodies can be measured by enzyme-linked immuno sorbent assays (ELISAs) using salivary gland homogenates (SGHs) as the source of antigens and serve as a markers for exposure to biting sand flies. Large-scale screening for anti-sand fly saliva antibodies requires replacement of SGH with recombinant salivary proteins. In East Africa, Phlebotomus orientalis is the main vector of Leishmania donovani, a trypanosomatid parasite causing visceral leishmaniasis. We tested recombinant salivary proteins derived from Ph. orientalis saliva to study exposure of domestic animals to this sand fly species. METHODOLOGY/PRINCIPAL FINDINGS: Antigenic salivary proteins from Ph. orientalis were identified by immunoblot and mass spectrometry. Recombinant apyrase rPorSP15, yellow-related protein rPorSP24, ParSP25-like protein rPorSP65, D7-related protein rPorSP67, and antigen 5-related protein rPorSP76 were tested using ELISA with sera of domestic animals from L. donovani foci in Ethiopia where Ph. orientalis is present. Our results highlighted recombinant yellow-related protein rPorSP24 as the most promising antigen, displaying a high positive correlation coefficient as well as good sensitivity and specificity when compared to SGH. This recombinant protein was the most suitable one for testing sera of dogs, sheep, and goats. In addition, a different antigen, rPorSP65 was found efficacious for testing canine sera. CONCLUSIONS/SIGNIFICANCE: Recombinant salivary proteins of Ph. orientalis, specifically rPorSP24, were shown to successfully substitute SGH in serological experiments to measure exposure of domestic animals to Ph. orientalis, the vector of L. donovani. The results suggest that rPorSP24 might be a suitable antigen for detecting anti-Ph. orientalis antibody-mediated reactions also in other host species.
- MeSH
- antigeny genetika imunologie MeSH
- hmotnostní spektrometrie MeSH
- hospodářská zvířata * MeSH
- imunoblotting MeSH
- kousnutí a bodnutí hmyzem diagnóza MeSH
- kozy MeSH
- ovce MeSH
- protilátky krev MeSH
- psi MeSH
- Psychodidae genetika imunologie MeSH
- rekombinantní proteiny genetika imunologie MeSH
- slinné proteiny a peptidy genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH