Polyamide Surface Layer Nano-Indentation and Thermal Properties Modified by Irradiation
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
IGA/FT/2020/003
TBU in Zlin Internal Grant Agency
PubMed
32610497
PubMed Central
PMC7372335
DOI
10.3390/ma13132915
PII: ma13132915
Knihovny.cz E-resources
- Keywords
- Keywords: polyamide, cross-linking, electron rays, gel content, nano-indentation, surface layer,
- Publication type
- Journal Article MeSH
This study describes the effect of electron radiation on the nano-mechanical properties of surface layers of selected polyamide (PA) types. Electron radiation initiates the cross-linking of macromolecules in the polyamide structure, leading to the creation of a 3D network which fundamentally changes the properties of the tested polymers. Selected types of polyamide (PA 6, PA 66 and PA 9T) were exposed to various intensities of electron radiation (33 kGy, 66 kGy, 99 kGy, 132 kGy, 165 kGy and 198 kGy). The cross-linked polyamides' surface properties were measured by means of the modern nano-indentation technique (Depth Sensing Indentation; DSI), which operates on the principle of the immediate detection of indenter penetration depth in dependence on the applied load. The evaluation was preformed using the Oliver-Pharr method. The effect of electron radiation on the tested polyamides manifested itself in the creation of a 3D network, which led to an increase of surface layer properties, such as indentation hardness, elastic modulus, creep and temperature resistance, by up to 93%. The increase of temperature and mechanical properties substantially broadens the field of application of these materials in technical practice, especially when higher temperature resistance is required. The positive changes to the nano-mechanical properties as well as mechanical and temperature capabilities instigated by the cross-linking process were confirmed by the gel volume test. These measurements lay the foundation for a detailed study of this topic, as well as for a more effective means of modifying chosen properties of technical polyamide products by radiation.
See more in PubMed
Ovsik M., Manas M., Stanek M., Dockal A., Mizera A., Fluxa P., Bednarik M., Adamek M. Nano-Mechanical Properties of Surface Layers of Polyethylene Modified by Irradiation. Materials. 2020;13:929. doi: 10.3390/ma13040929. PubMed DOI PMC
Tabata Y., Ito Y., Tagawa S., editors. CRC Handbook of Radiation Chemistry. CRC Press; Boca Raton, FL, USA: 1991.
Makuuchi K. Critical review of radiation processing of hydrogel and polysaccharide. Radiat. Phys. Chem. 2010;79:267–271. doi: 10.1016/j.radphyschem.2009.10.011. DOI
Ivanov V. Radiation Chemistry of Polymers. VSP; Utrecht, The Netherlands: 1992.
Zhang L.H., Qi Y.C., Yu L., Li S.Z., Chen D.L. Radiation Effects on Crystalline Polymers—I, Crystallinity Dependence of Chemical Reaction in Irradiated Polyamide-1010. Radiat. Phys. Chem. 2001;36:743–746.
Woods R.J., Pikaev A.K. Applied Radiation Chemistry: Radiation Processing. Wiley-Interscience Publication; New York, NY, USA: 1994.
Sun J.Z. The Effect of Chain flexibility and Chain Mobility on Radiation Crosslinking of Polymers. Radiat. Phys. Chem. 2001;60:445–451.
Lyons B.J., Glover L.C., Jr. Radiolytic crosslinking and chain scission in aliphatic and alkyl-aromatic polyamides. Part I. Radiat. Phys. Chem. 1990;35:139–147. doi: 10.1016/1359-0197(90)90073-Q. DOI
ChmielewskiI A.G., Haji-Saeid M., Ahmed S. Progress in radiation processing of polymers. Nucl. Instrum. Methods Phys. Res. B. 2005;236:44–54. doi: 10.1016/j.nimb.2005.03.247. DOI
Makuuchi K., Cheng S. Radiation Processing of PolymerMaterials and its Industrial Applications. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2012.
Brocka Z. Werkstoff- und Einsatzpotential Strahlenvernetzter Thermoplaste. Lehrsthul für Kunststofftechnik (LKT); Nuremberg, Germany: 2008.
Feng W., Hu F.M., Yuan L.H., Zhou Y., Zhou Y.Y. Radiation crosslinking of polyamide 610. Radiat. Phys. Chem. 2002;63:493. doi: 10.1016/S0969-806X(01)00635-1. DOI
Deeley C.W., Woodwar A.E., Sauer J.A. Effect of irradiation on dynamic mechanical properties of 6-6 nylon. J. Appl. Phys. 1957;28:1124–1130. doi: 10.1063/1.1722591. DOI
Ferra W.P., Leonardo G.A.S. Ionizing radiation effect studies on polyamide 6.6 properties. Radiat. Phys. Chem. 2004;71:267–269. doi: 10.1016/j.radphyschem.2004.03.051. DOI
Pinto C., Andrade e Silva L.G. Study of ionizing radiation on the properties of polyamide 6 with fiberglass reinforcement. Radiat. Phys. Chem. 2007;76:1708–1710. doi: 10.1016/j.radphyschem.2007.05.004. DOI
Pramanik N.K., Haldar R.S., Bhardwaj Y.K., Sabharwal S., Noyogi U.K., Khandal R.K. Radiation processing of Nylon-6 by e-beam for improved properties and performance. Radiat. Phys. Chem. 2009;78:199–205. doi: 10.1016/j.radphyschem.2008.11.004. DOI
Burrillo G., Adem E., Munoz E., Vásquez M. Electron beam irradiated polyamide-6 at different temperature. Radiat. Phys. Chem. 2013;84:140–144. doi: 10.1016/j.radphyschem.2012.06.029. DOI
Feulner R., Brocka Z., Seefried A., Kobes M.O., Hulder G., Osswald T.A. The effects of e-beam irradiation induced cross-linking on the friction and wear of polyamide 66 in sliding contact. Wear. 2010;268:905–9010. doi: 10.1016/j.wear.2009.12.025. DOI
Dadbin S., Frounchi M., Goudarzi D. Electron beam induced crosslinking of nylon 6 with and without the presence of TAC. Polym. Degrad. Stab. 2005;89:436–441. doi: 10.1016/j.polymdegradstab.2005.02.001. DOI
Porubska M., Szollos O., Konova A., Janigova I., Jaskova M., Jomova K., Chodak I. FTIR spectroscopy study of polyamide-6 irradiated by electron and proton beams. Polym. Degrad. Stab. 2012;97:523–531. doi: 10.1016/j.polymdegradstab.2012.01.017. DOI
Mehnert R. Electron beams in research and technology. Nucl. Instrum. Methods Phys. Res. B. 1995;105:348–358. doi: 10.1016/0168-583X(95)00634-6. DOI
Timus D.M., Cincu C., Bradley D.A., Cracium G., Mateescu E. Modification of some properties of polyamide-6 by elcectron bema induced grafting. Appl. Radiat. Isot. 2000;53:937–944. doi: 10.1016/S0969-8043(00)00258-X. PubMed DOI
Karstens T., Rossbach V. Thermo-oxidative degradation of polyamide 6 and 6,6. Kinetics of the formation and inhibition of UV/VISactive chromophores. Die Makromol. Chem. 1989;190:12. doi: 10.1002/macp.1989.021901201. DOI
Kaindl K., Graul E.H. Strahlenchemie, Dr. Alfred Hüttig. Verlag; Heildelberg, Germany: 1967.
Mleziva J. Polymers—Production, Structure, Properties and Applications. Sobotales; Prague, Czech Republic: 1993.
Shin B.Y., Ha M.H., Han D.H. Morphological, Rheological, and Mechanical Properties of Polyamide 6/Polypropylene Blends Compatibilized by Electron-Beam Irradiation in the Presence of a Reactive Agent. Materials. 2016;9:342. doi: 10.3390/ma9050342. PubMed DOI PMC
Pramanik N.K., Haldar R.S., Niyogi U.K., Alam M.S. Development of an Advanced Engineerign Polymer from the Modification of Nylon 66 by E-Beam Irradiation. Def. Sci. J. 2014;64:281–289. doi: 10.14429/dsj.64.7328. DOI
Uddin J.A., Gotoh Y., Ohkoshi Y., Nishino T., Endo R. Crystal Modulus of a New Semiaromatic Polyamide 9-T. Polym. Eng. Sci. 2011:331–337. doi: 10.1002/pen.22086. DOI
Porubska M., Janigova I., Jomova K., Chodak I. The Effect of Electron Beam Irradiation on Properties of Virgin and Glass Fiber-reinforced Polyamide 6. Radiat. Phys. Chem. 2014;102:159–166. doi: 10.1016/j.radphyschem.2014.04.037. DOI
Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004;19:3–20. doi: 10.1557/jmr.2004.19.1.3. DOI
Manas D., Mizera A., Navratil J., Manas M., Ovsik M., Sehnalek S., Stoklasek P. The electrical, mechanical and surface properties of thermoplastic polyester elastomer modified by electron beta radiation. Polymers. 2018;10:1057. doi: 10.3390/polym10101057. PubMed DOI PMC
Manas D., Mizera A., Manas M., Ovsik M., Hylova L., Sehnalek S., Stoklasek P. Mechanical properties changes of irradiated thermoplastic elastomer. Polymers. 2018;10:87. doi: 10.3390/polym10010087. PubMed DOI PMC
The Modification of Useful Injection-Molded Parts' Properties Induced Using High-Energy Radiation
The Influence of Surface Quality on Flow Length and Micro-Mechanical Properties of Polycarbonate