Influence of the β- Radiation/Cold Atmospheric-Pressure Plasma Surface Modification on the Adhesive Bonding of Polyolefins
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
33375751
PubMed Central
PMC7795023
DOI
10.3390/ma14010076
PII: ma14010076
Knihovny.cz E-resources
- Keywords
- adhesion, bonded joints, free surface energy, plasma treatment, polypropylene, radiation cross-linking, wetting contact angle, β− radiation,
- Publication type
- Journal Article MeSH
The goal of this research was to examine the effect of two surface modification methods, i.e., radiation cross-linking and plasma treatment, on the adhesive properties and the final quality of adhesive bonds of polypropylene (PP), which was chosen as the representative of the polyolefin group. Polymer cross-linking was induced by beta (accelerated electrons-β-) radiation in the following dosages: 33, 66, and 99 kGy. In order to determine the usability of β- radiation for these applications (improving the adhesive properties and adhesiveness of surface layers), the obtained results were compared with values measured on surfaces treated by cold atmospheric-pressure plasma with outputs 2.4, 4, and 8 W. The effects of both methods were compared by several parameters, namely wetting contact angles, free surface energy, and overall strength of adhesive bonds. Furthermore, Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were conducted. According to our findings the following conclusion was reached; both tested surface modification methods significantly altered the properties of the specimen's surface layer, which led to improved wetting, free surface energy, and bond adhesion. Following the β- radiation, the free surface energy of PP rose by 80%, while the strength of the bond grew in some cases by 290% in comparison with the non-treated surface. These results show that when compared with cold plasma treatment the beta radiation appears to be an effective tool capable of improving the adhesive properties and adhesiveness of PP surface layers.
See more in PubMed
Sanchis M., Blanes V., Blanes M., Garcia D., Balart R. Surface modification of low density polyethylene (LDPE) film by low pressure O2 plasma treatment. Eur. Polym. J. 2006;42:1558–1568. doi: 10.1016/j.eurpolymj.2006.02.001. DOI
Friedman M., Walsh G. High performance films: Review of new materials and trends. Polym. Eng. Sci. 2002;42:1756–1788. doi: 10.1002/pen.11069. DOI
Encinas N., Abenojar J., Martínez M. Ángel Development of improved polypropylene adhesive bonding by abrasion and atmospheric plasma surface modifications. Int. J. Adhes. Adhes. 2012;33:1–6. doi: 10.1016/j.ijadhadh.2011.10.002. DOI
Mourad A.-H.I. Thermo-mechanical characteristics of thermally aged polyethylene/polypropylene blends. Mater. Des. 2010;31:918–929. doi: 10.1016/j.matdes.2009.07.031. DOI
Rotheiser J. Joining of Plastics: Handbook for Designers and Engineers. Hanser Publishers; Munich, Germany: 2009. p. 592.
Campo E.A. The Complete Part Design Handbook: For Injection Molding of Thermoplastics. Hanser Publishers; Munich, Germany: 2006. p. 870.
Lapèíková B., Lapèík L., Smolka P., Dlabaja R., Hui D. Application of radio frequency glow discharge plasma for enhancing adhesion bonds in polymer/polymer joints. J. Appl. Polym. Sci. 2006;102:1827–1833. doi: 10.1002/app.24081. DOI
Manas D., Bednarik M., Mizera A., Manas M., Ovsik M., Stoklasek P. Effect of beta radiation on the quality of the bonded joint for difficult to bond polyolefins. Polymers. 2019;11:1863. doi: 10.3390/polym11111863. PubMed DOI PMC
Ebnesajjad S. Handbook of Adhesives and Surface Preparation: Technology, Applications and Manufacturing. Elsevier; Amsterdam, The Netherlands: 2011. p. 427.
Mandolfino C., Lertora E., Gambaro C., Pizzorni M. Functionalization of Neutral Polypropylene by Using Low Pressure Plasma Treatment: Effects on Surface Characteristics and Adhesion Properties. Polymers. 2019;11:202. doi: 10.3390/polym11020202. PubMed DOI PMC
Ebnesajjad S. Surface Treatment of Materials for Adhesion Bonding. William Andrew Publishing; Norwich, NY, USA: 2006. p. 260.
Lehocký M., Drnovská H., Lapčíková B., Barros-Timmons A.M., Trindade T., Zembala M., Lačík L., Jr. Plasma surface modification of polyethylene. Colloids Surf. A Physicochem. Eng. Asp. 2003;222:125–131. doi: 10.1016/S0927-7757(03)00242-5. DOI
Encinas N., Díaz-Benito B., Abenojar J., Martínez M.A. Extreme durability of wettability changes on polyolefin surfaces by atmospheric pressure plasma torch. Surf. Coat. Technol. 2010;205:396–402. doi: 10.1016/j.surfcoat.2010.06.069. DOI
Maurau R., Boscher N.D., Olivier S., Bulou S., Belmonte T., Dutroncy J., Sindzingre T., Choquet P. Atmospheric pressure, low temperature deposition of photocatalytic TiOx thin films with a blown arc discharge. Surf. Coat. Technol. 2013;232:159–165. doi: 10.1016/j.surfcoat.2013.05.001. DOI
Novak I., Popelka A., Krupa I., Chodák I., Janigová I., Nedelčev T., Špírková M., Kleinová A. High-density polyethylene functionalized by cold plasma and silanes. Vacuum. 2012;86:2089–2094. doi: 10.1016/j.vacuum.2012.04.046. DOI
Lackner J.M., Kahn M., Waldhauser W. Plasma modification and deposition on inner tube faces by pulsed DC discharges. Vacuum. 2011;86:144–150. doi: 10.1016/j.vacuum.2011.05.005. DOI
Van Deynse A., Cools P., Leys C., Morent R., De Geyter N. Influence of ambient conditions on the aging behavior of plasma-treated polyethylene surfaces. Surf. Coat. Technol. 2014;258:359–367. doi: 10.1016/j.surfcoat.2014.08.073. DOI
Kim J., Mauchauffé R., Kim D., Kim J., Moon S.Y. Mechanism study of atmospheric-pressure plasma treatment of carbon fiber reinforced polymers for adhesion improvement. Surf. Coat. Technol. 2020;393:125841. doi: 10.1016/j.surfcoat.2020.125841. DOI
Darvish F., Sarkari N.M., Khani M., Eslami E., Shokri B., Mohseni M., Ebrahimi M., Alizadeh M., Dee C.F. Direct plasma treatment approach based on non-thermal gliding arc for surface modification of biaxially-oriented polypropylene with post-exposure hydrophilicity improvement and minus aging effects. Appl. Surf. Sci. 2020;509:144815. doi: 10.1016/j.apsusc.2019.144815. DOI
Klébert S., Tilajka S., Románszki L., Mohai M., Csiszár E., Károly Z. Degradation phenomena on atmospheric air plasma treatment of polyester fabrics. Surf. Interfaces. 2020;22:100826. doi: 10.1016/j.surfin.2020.100826. DOI
Makuuchi K., Cheng S. Radiation Processing of Polymer Materials and its Industrial Applications. Wiley; Hoboken, NJ, USA: 2012. p. 415.
Drobny J.G. Ionizing Radiation and Polymers: Principles, Technology and Applications. Elsevier/William Andrew; Oxford, UK: 2013. p. 298.
Ovsik M., Manas M., Stanek M., Dockal A., Mizera A., Fluxa P., Martin B., Adámek M. Nano-Mechanical Properties of Surface Layers of Polyethylene Modified by Irradiation. Materials. 2020;13:929. doi: 10.3390/ma13040929. PubMed DOI PMC
Ovsik M., Manas M., Stanek M., Dockal A., Vanek J., Mizera A., Adámek M., Stoklasek P. Polyamide Surface Layer Nano-Indentation and Thermal Properties Modified by Irradiation. Materials. 2020;13:2915. doi: 10.3390/ma13132915. PubMed DOI PMC
Kopal I., Vršková J., Labaj I., Ondrušová D., Hybler P., Harničárová M., Valíček J., Kušnerová M. The Effect of High-Energy Ionizing Radiation on the Mechanical Properties of a Melamine Resin, Phenol-Formaldehyde Resin, and Nitrile Rubber Blend. Materials. 2018;11:2405. doi: 10.3390/ma11122405. PubMed DOI PMC
Mizera A., Manas M., Manas D., Holik Z., Stanek M., Navrátil J., Martin B. Temperature Stability of Modified PBT by Radiation Cross-Linking. Adv. Mater. Res. 2014;1025:256–260. doi: 10.4028/www.scientific.net/AMR.1025-1026.256. DOI
Bradler P.R., Fischer J., Wallner G.M., Lang R.W. Characterization of Irradiation Crosslinked Polyamides for Solar Thermal Applications-Basic Thermo-Analytical and Mechanical Properties. Polymers. 2018;10:969. doi: 10.3390/polym10090969. PubMed DOI PMC
Zhang D., Yang S., Chen Y., Liu S., Zhao H., Gu J. 60Co γ-ray Irradiation Crosslinking of Chitosan/Graphene Oxide Composite Film: Swelling, Thermal Stability, Mechanical, and Antibacterial Properties. Polymers. 2018;10:294. doi: 10.3390/polym10030294. PubMed DOI PMC
Martin B., Manas D., Ovsik M., Manas M., Stanek M., Sanda S., Kratky P. Effect of Beta Irradiation on the Strength of Bonded Joints of HDPE. Key Eng. Mater. 2013;586:79–82. doi: 10.4028/www.scientific.net/kem.586.79. DOI
Martin B., Manas D., Manas M., Ovsik M., Navrátil J., Mizera A. Surface and Adhesive Properties of Low-Density Polyethylene after Radiation Cross-Linking. Key Eng. Mater. 2014;606:265–268. doi: 10.4028/www.scientific.net/kem.606.265. DOI
Martin B., Manas D., Manas M., Stanek M., Navrátil J., Mizera A. Effect of Ionizing Beta Radiation on the Strength of Bonded Joints of Polycarbonate. Adv. Mater. Res. 2014;1025:251–255. doi: 10.4028/www.scientific.net/amr.1025-1026.251. DOI
CSN EN 1465 . Adhesives—Determination of Tensile Lap-Shear Strength of Bonded Assemblies. CEN; Brussels, Belgium: 2009.
Relyon Plasma. [(accessed on 10 October 2020)]; Available online: https://www.relyon-plasma.com.
ASTM 51261 . Practice for Calibration of Routine Dosimetry Systems for Radiation Processing. 2nd ed. ASTM International; West Conshohocken, PA, USA: 2013.
EN 15802 . Conservation of Cultural Property—Test Methods—Determination of Static Contact Angle. CEN; Brussels, Belgium: 2009.
Kwok D. The usefulness of the Lifshitz–van der Waals/acid–base approach for surface tension components and interfacial tensions. Colloids Surf. A Physicochem. Eng. Asp. 1999;156:191–200. doi: 10.1016/S0927-7757(99)00070-9. DOI
Erbil H. Surface Chemistry of Solid and Liquid Interfaces. Blackwell; Oxford, UK: 2006. p. 352.
Kaelble D.H. Dispersion-Polar Surface Tension Properties of Organic Solids. J. Adhes. 1970;2:66–81. doi: 10.1080/0021846708544582. DOI
Rabel W. Aspekte der benetzungstheorie und ihre anwendung auf die untersuchung und veränderung der oberflächeneigenschaften von polymeren. Farbe Lacke. 1971;77:997–1005.
Owens D.K., Wendt R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 2003;13:1741–1747. doi: 10.1002/app.1969.070130815. DOI
Fowkes F.M. ATTRACTIVE FORCES AT INTERFACES. Ind. Eng. Chem. 1964;56:40–52. doi: 10.1021/ie50660a008. DOI
Kwok D., Neumann A. Contact angle measurement and contact angle interpretation. Adv. Colloid Interface Sci. 1999;81:167–249. doi: 10.1016/S0001-8686(98)00087-6. DOI
Murray K.A., Kennedy J.E., McEvoy B., Vrain O., Ryan D., Higginbotham C.L. The effects of high energy electron beam irradiation on the thermal and structural properties of low density polyethylene. Radiat. Phys. Chem. 2012;81:962–966. doi: 10.1016/j.radphyschem.2011.09.011. DOI
Hama Y., Oka T., Uchiyama J., Kanbe H., Nabeta K., Yatagai F. Long-term oxidative degradation in polyethylene irradiated with ion beams. Radiat. Phys. Chem. 2001;62:133–139. doi: 10.1016/S0969-806X(01)00430-3. DOI
Carpentieri I., Brunella V., Bracco P., Paganini M.C., Del Prever E.M.B., Luda M.P., Bonomi S., Costa L. Post-irradiation oxidation of different polyethylenes. Polym. Degrad. Stab. 2011;96:624–629. doi: 10.1016/j.polymdegradstab.2010.12.014. DOI
Costa L., Carpentieri I., Bracco P. Post electron-beam irradiation oxidation of orthopaedic UHMWPE. Polym. Degrad. Stab. 2008;93:1695–1703. doi: 10.1016/j.polymdegradstab.2008.06.003. DOI
Almond J., Sugumaar P., Wenzel M.N., Hill G., Wallis C. Determination of the carbonyl index of polyethylene and polypropylene using specified area under band methodology with ATR-FTIR spectroscopy. e-Polymers. 2020;20:369–381. doi: 10.1515/epoly-2020-0041. DOI
The Modification of Useful Injection-Molded Parts' Properties Induced Using High-Energy Radiation