Effect of Beta Radiation on the Quality of the Bonded Joint for Difficult to Bond Polyolefins
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
31726648
PubMed Central
PMC6918195
DOI
10.3390/polym11111863
PII: polym11111863
Knihovny.cz E-zdroje
- Klíčová slova
- adhesion, beta radiation, bonded joints, free surface energy, oxidation, polyethylene, polypropylene, radiation crosslinking, wetting contact angle,
- Publikační typ
- časopisecké články MeSH
Bonding is increasingly being used, and it is an ever-evolving method for creating unbreakable bonds. The strength of adhesive bonds determines, to a significant extent, the possible applications of this technology and is influenced by many factors. In addition to the type of adhesive used, the characteristics of the surface layers play a significant role; therefore, significant attention is paid to their adjustment and modification. Radiation crosslinking is one of the most important methods for modifying polymer properties. Currently, the most frequently used type of radiation for polymer crosslinking is beta minus (β-) radiation, which affects not only mechanical but also surface properties, chemical and temperature resistance, and surface layer characteristics of polymers. This study investigated the effect of β- radiation on the surface layer properties of low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polypropylene (PP) and the effects of surface-layer modification on the ultimate tensile strength of bonded joints. Based on the results, we concluded that β- radiation significantly changes the properties of the tested surface layers, increases the surface energy, and improves the adhesiveness of bonds. Consequently, the final strength of the LDPE, HDPE, and PP bonds increases significantly.
Zobrazit více v PubMed
Lehocký M., Drnovská H., Lapčíková B., Barros-Timmons A.M., Trindade T., Zembala M., Lapčík L., Jr. Plasma surface modification of polyethylene. Colloids Surf. A Physicochem. Eng. Asp. 2003;222:125–131. doi: 10.1016/S0927-7757(03)00242-5. DOI
Ebnesajjad S. Handbook of Adhesives and Surface Preparation: Technology, Applications and Manufacturing. Elsevier; Amsterdam, The Netherlands: 2011. p. 427.
Wu S. Polymer Interface and Adhesion. Marcel Dekker; New York, NY, USA: 1982. p. 630.
Ebnesajjad S. Surface Treatment of Materials for Adhesion Bonding. William Andrew Publishing; Norwich, NY, USA: 2006. p. 260.
Lapcikova B., Lapcik L., Jr., Smolka P., Dlabaja R., Hui D. Application of radio frequency glow discharge plasma for enhancing adhesion bonds in polymer/polymer joints. J. Appl. Polymer Sci. 2006;102:1827–1833. doi: 10.1002/app.24081. DOI
Károly Z., Kalácska G., Zsidai L., Mohai M., Klébert S. Improvement of Adhesion Properties of Polyamide 6 and Polyoxymethylene-Copolymer by Atmospheric Cold Plasma Treatment. Polymers. 2018;10:1380. doi: 10.3390/polym10121380. PubMed DOI PMC
Mandolfino C., Lertora E., Gambaro C., Pizzorni M. Functionalization of Neutral Polypropylene by Using Low Pressure Plasma Treatment: Effects on Surface Characteristics and Adhesion Properties. Polymers. 2019;11:202. doi: 10.3390/polym11020202. PubMed DOI PMC
Lin F., Li W., Tang Y., Shao H., Su C., Jiang J., Chen N. High-Performance Polyimide Filaments and Composites Improved by O₂ Plasma Treatment. Polymers. 2018;10:695. doi: 10.3390/polym10070695. PubMed DOI PMC
Panaitescu D.M., Ionita E.R., Nicolae C.-A., Gabor A.R., Ionita M.D., Trusca R., Lixandru B.-E., Codita I., Dinescu G. Poly(3-hydroxybutyrate) Modified by Nanocellulose and Plasma Treatment for Packaging Applications. Polymers. 2018;10:1249. doi: 10.3390/polym10111249. PubMed DOI PMC
Hansen R.H., Schonhorn H. A new technique for preparing low surface energy polymers for adhesive bonding. J. Polym. Sci. Part B: Polym. Lett. 1966;4:203–209. doi: 10.1002/pol.1966.110040309. DOI
Šimor M., Krump H., Hudec I., Rahel J., Brablec A., Cernak M. Atmospheric pressure H2O plasma treatment of polyester cord threads. Acta Phys. Slovaca. 2002;54:43–48.
Hudec I., Jasso M., Cernak M., Krump H., Dayss E., Suriova V. Plasma Treatment and Polymerization-Method for Adhesion Strength Improvement of Textile Cord to Rubber. Volume 58. KGK Kautschuk Gummi Kunststoffe; Heidelberg, Germany: 2005. pp. 525–528.
Krump H., Šimor M., Hudec I., Jaššo M., Luyt A., Luyt A. Adhesion strength study between plasma treated polyester fibres and a rubber matrix. Appl. Surf. Sci. 2005;240:268–274. doi: 10.1016/j.apsusc.2004.06.109. DOI
Hudec I., Jasso M., Krump H., Cernák M., Illisch S. The Influence of Plasma Polymerization on Adhesion of Polyester Cords to Rubber Matrix. Volume 61. KGK Kautschuk Gummi Kunststoffe; Heidelberg, Germany: 2008. pp. 95–97.
Vijayalakshmi K.A., Mekala M., Yoganand C.P., Pandiyaraj K.N. Studies on Modification of Surface Properties in Polycarbonate (PC) Film Induced by DC Glow Discharge Plasma. Int. J. Polym. Sci. 2011;2011:1–7. doi: 10.1155/2011/426057. DOI
Lehocký M., Mracek A. Improvement of dye adsorption on synthetic polyester fibers by low temperature plasma pre-treatment. Czechoslov. J. Phys. 2006;56:B1277–B1282. doi: 10.1007/s10582-006-0362-5. DOI
Jasso M., Krump H., Hudec I., St’Ahel’ P., Kováčik D., Sira M. Coating of PET cords at atmospheric pressure plasma discharge in the presence of butadiene/nitrogen gas mixtures. Surf. Coatings Technol. 2006;201:57–62. doi: 10.1016/j.surfcoat.2005.10.024. DOI
Jasso M., Hudec I., Alexy P., Kováčik D., Krump H. Grafting of maleic acid on the polyester fibres initiated by plasma at atmospheric pressure. Int. J. Adhes. Adhes. 2006;26:274–284. doi: 10.1016/j.ijadhadh.2005.04.001. DOI
Černak M., Černáková L., Hudec I., Kováčik D., Zahoranová A. Diffuse Coplanar Surface Barrier Discharge and its applications for in-line processing of low-added-value materials. Eur. Phys. J. Appl. Phys. 2009;47:22806. doi: 10.1051/epjap/2009131. DOI
Rahel’ J., Cernak M., Hudec I., Brablec A., Trunec D., Chodák I. Atmospheric-pressure plasma treatment of ultra-high-molecular-weight polypropylene fabric. Czechoslov. J. Phys. 2000;50:445–448. doi: 10.1007/BF03165926. DOI
Makuuchi K., Cheng S. Radiation Processing of Polymer Materials and Its Industrial Applications. Wiley; Hoboken, NJ, USA: 2012. p. 415.
Drobny J.G. Ionizing Radiation and Polymers: Principles, Technology and Applications. Elsevier/William Andrew; Oxford, UK: 2013. p. 298.
Gheysari D., Behjat A., Haji-Saeid M. The effect of high-energy electron beam on mechanical and thermal properties of LDPE and HDPE. Eur. Polym. J. 2001;37:295–302. doi: 10.1016/S0014-3057(00)00122-1. DOI
Satapathy S., Chattopadhyay S., Chakrabarty K.K., Nag A., Tiwari K.N., Tikku V.K., Nando G.B. Studies on the effect of electron beam irradiation on waste polyethylene and its blends with virgin polyethylene. J. Appl. Polym. Sci. 2006;101:715–726. doi: 10.1002/app.23970. DOI
Gehring J., Zyball A. Radiation crosslinking of polymers-status, current issues, trends and challenges. Radiat. Phys. Chem. 1995;46:931–936. doi: 10.1016/0969-806X(95)00295-9. DOI
Bradler P.R., Fischer J., Wallner G.M., Lang R.W. Characterization of Irradiation Crosslinked Polyamides for Solar Thermal Applications-Basic Thermo-Analytical and Mechanical Properties. Polymers. 2018;10:969. doi: 10.3390/polym10090969. PubMed DOI PMC
Zhang D., Yang S., Chen Y., Liu S., Zhao H., Gu J. 60Co γ-ray Irradiation Crosslinking of Chitosan/Graphene Oxide Composite Film: Swelling, Thermal Stability, Mechanical, and Antibacterial Properties. Polymers. 2018;10:294. doi: 10.3390/polym10030294. PubMed DOI PMC
Mizera A., Manas M., Manas D., Holik Z., Stanek M., Navrátil J., Bednárik M. Temperature Stability of Modified PBT by Radiation Cross-Linking. Adv. Mater. Res. 2014;1025:256–260. doi: 10.4028/www.scientific.net/AMR.1025-1026.256. DOI
Navrátil J., Mañas M., Mizera A., Bednařík M., Stanek M., Danek M. Recycling of irradiated high-density polyethylene. Radiat. Phys. Chem. 2015;106:68–72. doi: 10.1016/j.radphyschem.2014.06.025. DOI
Malinowski R. Application of the electron radiation and triallyl isocyanurate for production of aliphatic-aromatic co-polyester of modified properties. Int. J. Adv. Manuf. Technol. 2016;87:3307–3314. doi: 10.1007/s00170-016-8713-2. DOI
Al Naim A., Alnaim N., Ibrahim S.S., Metwally S. Effect of gamma irradiation on the mechanical properties of PVC/ZnO polymer nanocomposite. J. Radiat. Res. Appl. Sci. 2017;10:165–171. doi: 10.1016/j.jrras.2017.03.004. DOI
Seefried A., Drummer D. The effects of radiation cross-linking and process parameters on the behavior of polyamide 12 in vacuum thermoforming. Polymer Eng. Sci. 2012;52:884–892. doi: 10.1002/pen.22155. DOI
Bednarik M. Ph.D. Thesis. Tomas Bata University in Zlin; Zlin, Czech Republic: 2015. Possibilities of Influencing the Strength of Bonded Joint at Selected Types of Polymers; p. 135.
Bednarik M., Manas D., Ovsik M., Manas M., Stanek M., Sanda S., Kratky P. Effect of Beta Irradiation on the Strength of Bonded Joints of HDPE. Key Eng. Mater. 2013;586:79–82. doi: 10.4028/www.scientific.net/KEM.586.79. DOI
Bednarik M., Manas D., Manas M., Stanek M., Mizera A., Ovsik M., Kratky P. Strength of bonded joints at elevated temperatures after radiation cross-linking. Int. J. Mech. 2014;8:10–17. doi: 10.4028/www.scientific.net/AMR.1025-1026.615. DOI
Bednarik M., Manas D., Manas M., Ovsik M., Navrátil J., Mizera A. Surface and Adhesive Properties of Low-Density Polyethylene after Radiation Cross-Linking. Key Eng. Mater. 2014;606:265–268. doi: 10.4028/www.scientific.net/KEM.606.265. DOI
Bednarik M., Manas D., Manas M., Stanek M., Navrátil J., Mizera A. Effect of Ionizing Beta Radiation on the Strength of Bonded Joints of Polycarbonate. Adv. Mater. Res. 2014;1025:251–255. doi: 10.4028/www.scientific.net/AMR.1025-1026.251. DOI
ASTM 51261 . Practice for Calibration of Routine Dosimetry Systems for Radiation Processing. 2nd ed. ASTM International; West Conshohocken, PA, USA: 2013.
CSN EN ISO 10147 . Pipes and Fittings Made of Crosslinked Polyethylene (PE-X)—Estimation of the Degree of Crosslinking by Determination of the Gel Content. CEN; Brussels, Belgium: 2013.
EN 15802 . Conservation of Cultural Property—Test Methods—Determination of Static Contact Angle. CEN; Brussels, Belgium: 2009.
Erbil H. Surface Chemistry of Solid and Liquid Interfaces. Blackwell; Oxford, UK: 2006. p. 352.
Kaelble D.H. Dispersion-polar surface tension properties of organic solids. J. Adhes. [online] 2008;2:66–81. doi: 10.1080/0021846708544582. DOI
Rabel W. Aspekte der benetzungstheorie und ihre anwendung auf die untersuchung und veränderung der oberflächeneigenschaften von polymeren. Farbe Lacke. 1971;77:997–1005.
Owens D.K., Wendt R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969;13:1741–1747. doi: 10.1002/app.1969.070130815. DOI
Kwok D.Y., Neumann A.W. Contact angle measurement and contact angle interpretation. Adv. Colloid Interface Sci. 1999;81:167–249. doi: 10.1016/S0001-8686(98)00087-6. DOI
Khonakdar H., Jafari S.H., Wagenknecht U., Jehnichen D. Effect of electron-irradiation on cross-link density and crystalline structure of low- and high-density polyethylene. Radiat. Phys. Chem. 2006;75:78–86. doi: 10.1016/j.radphyschem.2005.05.014. DOI
Murray K.A., Kennedy J.E., McEvoy B., Vrain O., Ryan D., Higginbotham C.L. The effects of high energy electron beam irradiation on the thermal and structural properties of low density polyethylene. Radiat. Phys. Chem. 2012;81:962–966. doi: 10.1016/j.radphyschem.2011.09.011. DOI
Hama Y., Oka T., Uchiyama J., Kanbe H., Nabeta K., Yatagai F. Long-term oxidative degradation in polyethylene irradiated with ion beams. Radiat. Phys. Chem. 2001;62:133–139. doi: 10.1016/S0969-806X(01)00430-3. DOI
Carpentieri I., Brunella V., Bracco P., Paganini M.C., Del Prever E.M.B., Luda M.P., Bonomi S., Costa L. Post-irradiation oxidation of different polyethylenes. Polym. Degrad. Stab. 2011;96:624–629. doi: 10.1016/j.polymdegradstab.2010.12.014. DOI
Costa L., Carpentieri I., Bracco P. Post electron-beam irradiation oxidation of orthopaedic UHMWPE. Polym. Degrad. Stab. 2008;93:1695–1703. doi: 10.1016/j.polymdegradstab.2008.06.003. DOI
Rivaton A., Lalande D., Gardette J.-L. Influence of the structure on the γ-irradiation of polypropylene and on the post-irradiation effects. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2004;222:187–200. doi: 10.1016/j.nimb.2004.02.012. DOI
The Modification of Useful Injection-Molded Parts' Properties Induced Using High-Energy Radiation
Nano-Mechanical Properties of Surface Layers of Polyethylene Modified by Irradiation