Effect of Temperature Ageing on Injection Molded High-Density Polyethylene Parts Modified by Accelerated Electrons

. 2022 Jan 19 ; 15 (3) : . [epub] 20220119

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35160688

Grantová podpora
CZ.1.05/2.1.00/19.0376 European Regional Development Fund
LO1303 (MSMT-7778/2014) Czech Ministry of Education, Youth and Sports of the Czech Republic

The temperature ageing of high-density polyethylene (HDPE) modified by accelerated electrons was studied. Commodity plastic HDPE was used as a basic polymer material which was modified by radiation cross-linking. This polymer was used because of its excellent processability and chemical resistance. Plastic injection molding technology was used for the production of test specimens. These specimens were modified with the dose of radiation 33, 66, 99, 132, 165, and 198 kGy. The prepared specimens were tested to determine: gel content, degree of swelling, temperature stability, and changes in mechanical properties after temperature ageing. The results were determined by scanning electron microscopy (SEM) analysis on the fracture surfaces. The results of this study confirm that modification of HDPE by radiation cross-linking has a significant effect on increasing temperature stability. It has been shown that HDPE modified by radiation cross-linking can withstand temperatures exceeding the melting point of the original HDPE for a short-term.

Zobrazit více v PubMed

Zheng X., Zhang X., Ma L., Wang W., Yu J. Mechanical characterization of notched high density polyethylene (HDPE) pipe: Testing and prediction. Int. J. Press. Vessel. Pip. 2019;173:11–19. doi: 10.1016/j.ijpvp.2019.04.016. DOI

Pock E., Kiss C., Janecska A., Epacher E., Pukánszky B. Effect of chain structure on the processing stability of high-density polyethylene. Polym. Degrad. Stab. 2004;85:1015–1021. doi: 10.1016/j.polymdegradstab.2003.05.005. DOI

Krajenta A., Rozanski A., Idczak R. Morphology and properties alterations in cavitating and non-cavitating high density polyethylene. Polymer. 2016;103:353–364. doi: 10.1016/j.polymer.2016.09.068. DOI

de la Orden M.U., Montes J.M., Urreaga J.M., Bento A., Ribeiro M.R., Pérez E., Cerrada M.L. Thermo and photo-oxidation of functionalized metallocene high density polyethylene: Effect of hydrophilic groups. Polym. Degrad. Stab. 2015;111:78–88. doi: 10.1016/j.polymdegradstab.2014.10.023. DOI

Amjadi M., Fatemi A. Creep and fatigue behaviors of High-Density Polyethylene (HDPE): Effects of temperature, mean stress, frequency, and processing technique. Int. J. Fatigue. 2020;141:105871. doi: 10.1016/j.ijfatigue.2020.105871. DOI

Zauner C.H., Hengstberger F., Etzel M., Lager D., Hofmann R., Walter H. Experimental characterization and simulation of a fin-tube latent heat storage using high density polyethylene as PCM. Appl. Energy. 2016;179:237–246. doi: 10.1016/j.apenergy.2016.06.138. DOI

Contino M., Andena L., Rink M., Colombo A., Marra G. Fracture of high-density polyethylene used for bleach bottles. Procedia Struct. Integr. 2016;2:213–220. doi: 10.1016/j.prostr.2016.06.028. DOI

Navarro L., Barreneche C., Castell A., Redpath D.A.G., Griffiths P.W., Cabeza L.F. High density polyethylene spheres with PCM for domestic hot water applications: Water tank and laboratory scale study. J. Energy Storage. 2017;13:262–267. doi: 10.1016/j.est.2017.07.025. DOI

Mazur K., Jakubowska P., Romańska P., Kuciel S. Green high density polyethylene (HDPE) reinforced with basalt fiber and agricultural fillers for technical applications. J. Compos. B Eng. 2020;202:108399. doi: 10.1016/j.compositesb.2020.108399. DOI

Narei H., Fatehifar M., Ghasempour R., Noorollahi Y. In pursuit of a replacement for conventional high-density polyethylene tubes in ground source heat pumps from their composites—A comparative study. Geothermics. 2020;87:101819. doi: 10.1016/j.geothermics.2020.101819. DOI

Madi N.K. Thermal and mechanical properties of injection molded recycled high density polyethylene blends with virgin isotactic polypropylene. Mater. Des. 2013;46:435–441. doi: 10.1016/j.matdes.2012.10.004. DOI

Dolynchuk O., Kolesov I., Androsch R., Radusch H.J. Kinetics and dynamics of two-way shape-memory behavior of crosslinked linear high-density and short-chain branched polyethylenes with regard to crystal orientation. Polymer. 2015;79:146–158. doi: 10.1016/j.polymer.2015.10.017. DOI

Paajanen A., Vaari J., Verho T. Crystallization of cross-linked polyethylene by molecular dynamics simulation. Polymer. 2019;171:80–86. doi: 10.1016/j.polymer.2019.03.040. DOI

Zhao M., Ding X., Mi J., Zhou H., Wang X. Role of high-density polyethylene in the crystallization behaviors, rheological property, and supercritical CO2 foaming of poly (lactic acid) Polym. Degrad. Stab. 2017;146:277–286. doi: 10.1016/j.polymdegradstab.2017.11.003. DOI

Pandiyaraj K.N., Ramkumar M.C., Kumar A.A., Padmanabhan P.V.A., Pichumani M., Bendavid A., Cools P., De Geyter N., Morent R., Kumar V., et al. Evaluation of surface properties of low density polyethylene (LDPE) films tailored by atmospheric pressure non-thermal plasma (APNTP) assisted co-polymerization and immobilization of chitosan for improvement of antifouling properties. Mater. Sci. Eng. C. 2019;94:150–160. doi: 10.1016/j.msec.2018.08.062. PubMed DOI

Daramola O.O., Taiwo A.S., Oladele I.O., Olajide J.L., Adeleke S.A., Adewuyi B.O., Sadiku E.R. Mechanical properties of high density polyethylene matrix composites reinforced with chitosan particles. Mater. Today Proc. 2021;38:682–687. doi: 10.1016/j.matpr.2020.03.695. DOI

Kim P.S., Mong A.L., Kim D. Thermal, mechanical, and electrochemical stability enhancement of Al2O3 coated polypropylene/polyethylene/polypropylene separator via poly(vinylidene fluoride)-poly(ethoxylated pentaerythritol tetraacrylate) semi-interpenetrating network binder. J. Membr. Sci. 2020;612:118481. doi: 10.1016/j.memsci.2020.118481. DOI

Bednarik M., Mizera A., Manas M., Navratil M., Huba J., Achbergerova E., Stoklasek P. Influence of the beta(-) Radiation/Cold Atmospheric-Pressure Plasma Surface Modification on the Adhesive Bonding of Polyolefins. Materials. 2021;14:76. doi: 10.3390/ma14010076. PubMed DOI PMC

Bednarik M., Mizera A., Manas M., Navratil M., Huba J., Achbergerova E., Stoklasek P. Effect of Beta Radiation on the Quality of the Bonded Joint for Difficult to Bond Polyolefins. Polymers. 2019;11:1863. doi: 10.3390/polym11111863. PubMed DOI PMC

Ovsik M., Manas M., Stanek M., Dockal A., Mizera A., Fluxa P., Bednarik M., Adamek M. Nano-Mechanical Properties of Surface Layers of Polyethylene Modified by Irradiation. Materials. 2020;13:929. doi: 10.3390/ma13040929. PubMed DOI PMC

Pelto J., Heino V., Karttunen M., Rytöluoto I., Ronkainen H. Tribological performance of high density polyethylene (HDPE) composites with low nanofiller loading. Wear. 2020;460–461:203451. doi: 10.1016/j.wear.2020.203451. DOI

Uflyand I.E., Drogan E.G., Burlakova V.E., Kydralieva K.A., Shershneva I.N., Dzhardimalieva G.I. Testing the mechanical and tribological properties of new metal-polymer nanocomposite materials based on linear low-density polyethylene and Al65Cu22Fe13 quasicrystals. Polym. Test. 2019;74:178–186. doi: 10.1016/j.polymertesting.2019.01.004. DOI

Sciacovelli A., Navarro M.E., Jin Y., Qiao G., Zheng L., Leng G., Wang L., Ding Y. High density polyethylene (HDPE)—Graphite composite manufactured by extrusion: A novel way to fabricate phase change materials for thermal energy storage. Particuology. 2018;40:131–140. doi: 10.1016/j.partic.2017.11.011. DOI

Wilhelm H., Spieckermann F., Fischer C., Polt G., Zehetbauer M. Characterization of strain bursts in high density polyethylene by means of a novel nano creep test. Int. J. Plast. 2019;116:297–313. doi: 10.1016/j.ijplas.2019.01.010. DOI

Mahmoud M.E., El-Khatib A.M., Badawi M.S., Rashad A.R., El-Sharkawy R.M., Thabet A.A. Recycled high-density polyethylene plastics added with lead oxide nanoparticles as sustainable radiation shielding materials. J. Clean. Prod. 2018;176:276–287. doi: 10.1016/j.jclepro.2017.12.100. DOI

Moreno D.D.P., Saron C. Low-density polyethylene waste/recycled wood composites. Compos. Struct. 2017;176:1152–1157. doi: 10.1016/j.compstruct.2017.05.076. DOI

Huang X., Alva G., Liu L., Fang G. Microstructure and thermal properties of cetyl alcohol/high density polyethylene composite phase change materials with carbon fiber as shape-stabilized thermal storage materials. Appl. Energy. 2017;200:19–27. doi: 10.1016/j.apenergy.2017.05.074. DOI

Mohammadi H., Vincent M., Marand H. Investigating the equilibrium melting temperature of linear polyethylene using the non-linear Hoffman-Weeks approach. Polymer. 2018;146:344–360. doi: 10.1016/j.polymer.2018.05.049. DOI

Muhammad I., Makwashi N., Manos G. Catalytic degradation of linear low-density polyethylene over HY-zeolite via pre-degradation method. J. Anal. Appl. Pyrolysis. 2019;138:10–21. doi: 10.1016/j.jaap.2018.11.025. DOI

Chriaa I., Trigui A., Karkri M., Jedidi I., Abdelmouleh M., Boudaya C.H. Thermal properties of shape-stabilized phase change materials based on Low Density Polyethylene, Hexadecane and SEBS for thermal energy storage. Appl. Therm. Eng. 2020;171:115072. doi: 10.1016/j.applthermaleng.2020.115072. DOI

Zhang L., Zhou Y., Teng C.H., Zhang Y., Chen M., Cheng Z. Transient dynamics of packet-like space charge in low-density polyethylene at high temperatures. J. Electrostat. 2017;88:100–105. doi: 10.1016/j.elstat.2016.12.012. DOI

Dey T.K., Tripathi M. Thermal properties of silicon powder filled high-density polyethylene composites. Thermochim. Acta. 2010;502:35–42. doi: 10.1016/j.tca.2010.02.002. DOI

Zadorozhnyy M.Y., Chukov D.I., Churyukanova M.N., Gorshenkov M.V., Zadorozhnyy V.Y., Stepashkin A.A., Tsarkov A.A., Louzguine-Luzgin D.V., Kaloshkin S.D. Investigation of contact surfaces between polymer matrix and metallic glasses in composite materials based on high-density polyethylene. Mater. Des. 2016;92:306–312. doi: 10.1016/j.matdes.2015.12.031. DOI

Zhu C.H., Chen Y., Cong R., Ran F., Fang G. Improved thermal properties of stearic acid/high density polyethylene/carbon fiber composite heat storage materials. Sol. Energy Mater. Sol. Cells. 2021;219:110782. doi: 10.1016/j.solmat.2020.110782. DOI

Sotomayor M.E., Krupa I., Várez A., Levenfeld B. Thermal and mechanical characterization of injection moulded high density polyethylene/paraffin wax blends as phase change materials. Renew. Energy. 2014;68:140–145. doi: 10.1016/j.renene.2014.01.036. DOI

Nabiyev A.A., Olejniczak A., Pawlukojc A., Balasoiu M., Bunoiu M., Maharramov A.M., Nuriyev M.A., Ismayilova R.S., Azhibekov A.K., Kabyshev A.M., et al. Nano-ZrO2 filled high-density polyethylene composites: Structure, thermal properties, and the influence γ-irradiation. Polym. Degrad. Stab. 2020;171:109042. doi: 10.1016/j.polymdegradstab.2019.109042. DOI

Fairbrother A., Hsueh H.C.H., Kim J.H., Jacobs D., Perry L., Goodwin D., White C.H., Watson S., Sung L.P. Temperature and light intensity effects on photodegradation of high-density polyethylene. Polym. Degrad. Stab. 2019;165:153–160. doi: 10.1016/j.polymdegradstab.2019.05.002. DOI

Kumar V., Gulati K., Lal S., Arora S. Effect of gamma irradiation on tensile and thermal properties of poplar wood flour-linear low density polyethylene composites. Radiat. Phys. Chem. 2020;174:108922. doi: 10.1016/j.radphyschem.2020.108922. DOI

Rodriguez A.K., Mansoor B., Ayoub G., Colin X., Benzerga A.A. Effect of UV-aging on the mechanical and fracture behavior of low density polyethylene. Polym. Degrad. Stab. 2020;180:109185. doi: 10.1016/j.polymdegradstab.2020.109185. DOI

Cai Y., Wei Q., Huang F., Lin S., Chen F., Gao W. Thermal stability, latent heat and flame retardant properties of the thermal energy storage phase change materials based on paraffin/high density polyethylene composites. Renew. Energy. 2009;34:2117–2123. doi: 10.1016/j.renene.2009.01.017. DOI

Fan J., Xu S. Thermal conductivity and mechanical properties of high density polyethylene composites filled with silicon carbide whiskers modified by cross-linked poly (vinyl alcohol) J. Mater. Sci. Technol. 2018;34:2407–2414. doi: 10.1016/j.jmst.2018.04.003. DOI

Xu A., Roland S., Colin X. Thermal ageing of a silane-crosslinked polyethylene stabilised with a thiodipropionate antioxidant. Polym. Degrad. Stab. 2020;181:109276. doi: 10.1016/j.polymdegradstab.2020.109276. DOI

Weingrill H.M., Resch-Fauster K., Lucyshyn T., Zauner C. High-density polyethylene as phase-change material: Long-term stability and aging. Polym. Test. 2019;76:433–442. doi: 10.1016/j.polymertesting.2019.04.009. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Dynamic Behavior of Thermally Affected Injection-Molded High-Density Polyethylene Parts Modified by Accelerated Electrons

. 2022 Nov 16 ; 14 (22) : . [epub] 20221116

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...