• This record comes from PubMed

Dynamic Behavior of Thermally Affected Injection-Molded High-Density Polyethylene Parts Modified by Accelerated Electrons

. 2022 Nov 16 ; 14 (22) : . [epub] 20221116

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
CZ.02.2.69/0.0/0.0/18_053/0017879-1 Ministry of Education, Youth and Sports Czech Republic
CZ.02.2.69/0.0/0.0/16_028/0006243 European Structural and Investment Funds, Operational Programme Research, Development and Education

Polyethylenes are the most widely used polymers and are gaining more and more interest due to their easy processability, relatively good mechanical properties and excellent chemical resistance. The disadvantage is their low temperature stability, which excludes particular high-density polyethylenes (HDPEs) for use in engineering applications where the temperature exceeds 100 °C for a long time. One of the possibilities of improving the temperature stability of HDPE is a modification by accelerated electrons when HDPE is cross-linked by this process and it is no longer possible to process it like a classic thermoplastic, e.g., by injection technology. The HDPE modified in this way was thermally stressed five times at temperatures of 110 and 160 °C, and then the dynamic tensile behavior was determined. The deformation and surface temperature of the specimens were recorded by a high-speed infrared camera. Furthermore, two thermal methods of specimen evaluation were used: differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The result of the measurement is that the modification of HDPE by accelerated electrons had a positive effect on the dynamic tensile behavior of these materials.

See more in PubMed

Amjadi M., Fatemi A. Tensile Behavior of High-Density Polyethylene Including the Effects of Processing Technique, Thickness, Temperature, and Strain Rate. Polymers. 2020;12:1857. doi: 10.3390/polym12091857. PubMed DOI PMC

Amjadi M., Fatemi A. Creep Behavior and Modeling of High-Density Polyethylene (HDPE) Polym. Test. 2021;94:107031. doi: 10.1016/j.polymertesting.2020.107031. DOI

Abeysinghe S., Gunasekara C., Bandara C., Nguyen K., Dissanayake R., Mendis P. Engineering Performance of Concrete Incorporated with Recycled High-Density Polyethylene (HDPE) Polymers. 2021;13:1885. doi: 10.3390/polym13111885. PubMed DOI PMC

Wu W.-L., Wang Y.-W. Modified High-Density Polyethylene Films: Preparation. Composition and Their Physical Properties. Indian Acad. Sci. 2020;43:143. doi: 10.1007/s12034-020-02167-7. DOI

Wen Y., Tsou C.H., Gao C., Chen J.C., Tang Z., Chen Z., Yang T., Du J., Yu Y., Suen M.C., et al. Evaluating Distillers Grains as Bio-Fillers for High-Density Polyethylene. J. Polym. Res. 2020;27:167. doi: 10.1007/s10965-020-02148-8. DOI

Silviyati I., Zubaidah N., Amin J.M., Supraptiah E., Utami R.D., Ramadhan I. The Effect of Addition of High-Density Polyethylene (HDPE) as Binder on Hebel Light Brick (Celcon) Proc. J. Phys. Conf. Ser. Inst. Phys. Publ. 2020;1500:012083. doi: 10.1088/1742-6596/1500/1/012083. DOI

Viljoen D., Fischer M., Kühnert I., Labuschagné J. The Tensile Behaviour of Highly Filled High-Density Polyethylene Quaternary Composites: Weld-Line Effects, Dic Curiosities and Shifted Deformation Mechanisms. Polymers. 2021;13:527. doi: 10.3390/polym13040527. PubMed DOI PMC

Qin S., Xu W.H., Jiang H.W., Zhang H.H., He Y., Wu T., Qu J.P. Simultaneously Achieving Self-Toughening and Self-Reinforcing of Polyethylene on an Industrial Scale Using Volume-Pulsation Injection Molding. Polymer. 2021;213:123324. doi: 10.1016/j.polymer.2020.123324. DOI

Zachariades A., Economy J. Super Strong Polymers in Planar Directions. Polym. Eng. Sci. 1983;23:266–270. doi: 10.1002/pen.760230506. DOI

Allan P.S., Bevis M.J., Gibson J.R., May C.J., Pinwill I.E. Shear Controlled Orientation Technology for The Management of Reinforcing Fibres in Moulded and Extruded Composite Materials. Mater. Process. Technol. 1996;56:272–281. doi: 10.1016/0924-0136(96)85104-1. DOI

Lei J., Jiang C., Shen K. Biaxially Self-Reinforced High-Density Polyethylene Prepared by Dynamic Packing Injection Molding. I. Processing Parameters and Mechanical Properties. J. Appl. Polym. Sci. 2004;93:1584–1590. doi: 10.1002/app.20640. DOI

Youbing L., Kaizhi S. Self-Reinforced High-Density Polyethylene Prepared by Low Frequency Vibration-Assisted Injection Molding. II: Microstructure Investigation. J. Macromol. Sci. Part B. 2010;49:242–249. doi: 10.1080/00222340903328856. DOI

Layser G.S., Coulter J.P. Localized Effects of Dynamic Melt Manipulation on Flow Induced Orientation and Mechanical Performance of Injection Molded Products. Polym. Eng. Sci. 2007;47:1912–1919. doi: 10.1002/pen.20908. DOI

Primo Benitez-Rangel J., Trejo-Hernández M., Alberto Morales-Hernández L., Domínguez-González A. Improvement of the Injection Mold Process by Using Vibration through a Mold Accessory. Mater. Manuf. Process. 2010;25:577–580. doi: 10.1080/10426910903124902. DOI

Waschitschek K., Kech A., Christiansen J.D. Influence of Push-pull Injection Moulding on Fibres and Matrix of Fibre Reinforced Polypropylene. Compos. Part A. 2002;33:735–744. doi: 10.1016/S1359-835X(02)00007-6. DOI

Liu T., Li W., Li L., Peng X., Kuang T. Effect of Dynamic Oscillation Shear Flow Intensity on the Mechanical and Morphological Properties of High-Density Polyethylene: An Integrated Experimental and Molecular Dynamics Simulation Study. Polym. Test. 2019;80:106122. doi: 10.1016/j.polymertesting.2019.106122. DOI

Chaudhary A.K., Vijayakumar R.P. Effect of Chemical Treatment on Biological Degradation of High-Density Polyethylene (HDPE) Environ. Dev. Sustain. 2020;22:1093–1104. doi: 10.1007/s10668-018-0236-6. DOI

Dany H., Dhong W.W., Jiat K.W., Leong T.K., Yuhana N.Y., Tan G. Deodorizing Methods for Recycled High-Density Polyethylene Plastic Wastes. Mater. Plast. 1964;58:129–136. doi: 10.37358/MP.21.3.5511. DOI

Yang J., Li F., Guan C., Xu X., Zhong L., Gao Y., Han Y., Yan N., Zhao G., Jiang W. Brittle-Ductile Transition of Impact PP Blends: Effect of Modulus Ratio of PP Matrix to Impact Modifier. Polym. Bull. 2022 doi: 10.1007/s00289-022-04285-0. DOI

Alsayed Z., Badawi M.S., Awad R. Investigation of Thermal and Mechanical Behavior of HDPE/ZnFe2O4 Composite. J. Inorg. Organomet Polym. Mater. 2021;31:2757–2765. doi: 10.1007/s10904-021-01903-8. DOI

Amjadi M., Fatemi A. Creep and Fatigue Behaviors of High-Density Polyethylene (HDPE): Effects of Temperature, Mean Stress, Frequency, and Processing Technique. Int. J. Fatigue. 2020;141:105871. doi: 10.1016/j.ijfatigue.2020.105871. DOI

Salakhov I.I., Shaidullin N.M., Chalykh A.E., Matsko M.A., Shapagin A.V., Batyrshin A.Z., Shandryuk G.A., Nifant’ev I.E. Low-temperature Mechanical Properties of High-density and Low-density Polyethylene and Their Blends. Polymers. 2021;13:1821. doi: 10.3390/polym13111821. PubMed DOI PMC

Kumar S., Ramesh M.R., Doddamani M., Rangappa S.M., Siengchin S. Mechanical Characterization of 3D Printed MWCNTs/HDPE Nanocomposites. Polym. Test. 2022;114:107703. doi: 10.1016/j.polymertesting.2022.107703. DOI

Naik T.P., Gairola S., Singh I., Sharma A.K. Microwave Hybrid Heating for Moulding of Sisal/Jute/HDPE Composites. J. Nat. Fibers. 2022 doi: 10.1080/15440478.2022.2100553. DOI

Al-Majali Y.T., Forshey S., Trembly J.P. Effect of Natural Carbon Filler on Thermo-Oxidative Degradation of Thermoplastic-Based Composites. Thermochim. Acta. 2022;713:179226. doi: 10.1016/j.tca.2022.179226. DOI

Yağci Ö., Eker Gümüş B., Taşdemir M. Thermal, Structural and Morphological Properties of Polypropylene and High Density Polyethylene Polymer Composites Filled with Waste Urea Formaldehyde. Polym. Bull. 2022 doi: 10.1007/s00289-022-04245-8. DOI

Chialanza M.R., Sofía S.F., Parada A.P. Modeling Microplastic with Polyethylene (PE) Spherical Particles: A Differential Scanning Calorimetry Approach for Quantification. Environ. Sci. Pollut. Res. 2022;29:2311–2324. doi: 10.1007/s11356-021-15830-1. PubMed DOI

Savini G., Oréfice R.L. Super Ductility in HDPE/EVA Blends Triggered by Synthetic Amorphous Nanotalc. J. Polym. Res. 2021;28:19. doi: 10.1007/s10965-020-02389-7. DOI

Khalid H.U., Ismail M.C., Nosbi N. Degradation Monitoring of HDPE Material in CO2-Saturated NaCl Environment through Electrochemical Impedance Spectroscopy Technique. Materials. 2021;14:2823. doi: 10.3390/ma14112823. PubMed DOI PMC

Aderikha V.N., Feipeng C., Koval V.N., Xiaoyu L., Shapovalov V.A., Makarenko O.A., Yongguang X. Increasing the Resistance of HDPE to Abrasive Wear with Small Additions of UHMWPE. J. Frict. Wear. 2022;43:1–7. doi: 10.3103/S1068366622010020. DOI

Mazur K., Jakubowska P., Romańska P., Kuciel S. Green high density polyethylene (HDPE) reinforced with basalt fiber and agricultural fillers for technical applications. J. Compos. B Eng. 2020;202:108399. doi: 10.1016/j.compositesb.2020.108399. DOI

Madi N.K. Thermal and mechanical properties of injection molded recycled high density polyethylene blends with virgin isotactic polypropylene. Mater. Des. 2013;46:435–441. doi: 10.1016/j.matdes.2012.10.004. DOI

Dolynchuk O., Kolesov I., Androsch R., Radusch H.J. Kinetics and dynamics of two-way shape-memory behavior of crosslinked linear high-density and short-chain branched polyethylenes with regard to crystal orientation. Polymer. 2015;79:146–158. doi: 10.1016/j.polymer.2015.10.017. DOI

Paajanen A., Vaari J., Verho T. Crystallization of cross-linked polyethylene by molecular dynamics simulation. Polymer. 2019;171:80–86. doi: 10.1016/j.polymer.2019.03.040. DOI

Zhao M., Ding X., Mi J., Zhou H., Wang X. Role of high-density polyethylene in the crystallization behaviors, rheological property, and supercritical CO2 foaming of poly (lactic acid) Polym. Degrad. Stab. 2017;146:277–286. doi: 10.1016/j.polymdegradstab.2017.11.003. DOI

Daramola O.O., Taiwo A.S., Oladele I.O., Olajide J.L., Adeleke S.A., Adewuyi B.O., Sadiku E.R. Mechanical properties of high density polyethylene matrix composites reinforced with chitosan particles. Mater. Today Proc. 2021;38:682–687. doi: 10.1016/j.matpr.2020.03.695. DOI

Kim P.S., Mong A.L., Kim D. Thermal, mechanical, and electrochemical stability enhancement of Al2O3 coated polypropylene/polyethylene/polypropylene separator via poly(vinylidene fluoride)-poly(ethoxylated pentaerythritol tetraacrylate) semi-interpenetrating network binder. J. Membr. Sci. 2020;612:118481. doi: 10.1016/j.memsci.2020.118481. DOI

Mizera A., Manas M., Stoklasek P. Effect of Temperature Ageing on Injection Molded High-Density Polyethylene Parts Modified by Accelerated Electrons. Materials. 2022;15:742. doi: 10.3390/ma15030742. PubMed DOI PMC

Moreno D.D.P., Saron C. Low-density polyethylene waste/recycled wood composites. Compos. Struct. 2017;176:1152–1157. doi: 10.1016/j.compstruct.2017.05.076. DOI

Mohammadi H., Vincent M., Marand H. Investigating the equilibrium melting temperature of linear polyethylene using the non-linear Hoffman-Weeks approach. Polymer. 2018;146:344–360. doi: 10.1016/j.polymer.2018.05.049. DOI

Muhammad I., Makwashi N., Manos G. Catalytic degradation of linear low-density polyethylene over HY-zeolite via pre-degradation method. J. Anal. Appl. Pyrolysis. 2019;138:10–21. doi: 10.1016/j.jaap.2018.11.025. DOI

Chriaa I., Trigui A., Karkri M., Jedidi I., Abdelmouleh M., Boudaya C.H. Thermal properties of shape-stabilized phase change materials based on Low Density Polyethylene, Hexadecane and SEBS for thermal energy storage. Appl. Therm. Eng. 2020;171:115072. doi: 10.1016/j.applthermaleng.2020.115072. DOI

Nabiyev A.A., Olejniczak A., Pawlukojc A., Balasoiu M., Bunoiu M., Maharramov A.M., Nuriyev M.A., Ismayilova R.S., Azhibekov A.K., Kabyshev A.M., et al. Nano-ZrO2 filled high-density polyethylene composites: Structure, thermal properties, and the influence γ-irradiation. Polym. Degrad. Stab. 2020;171:109042. doi: 10.1016/j.polymdegradstab.2019.109042. DOI

Ahmad H., Rodrigue D. Crosslinked Polyethylene: A Review on the Crosslinking Techniques, Manufacturing Methods, Applications, and Recycling. Polym. Eng. Sci. 2022;62:2376–2401. doi: 10.1002/pen.26049. DOI

Manas D., Manas M., Mizera A., Stoklasek P., Navratil J., Sehnalek S., Drabek P. The High Density Polyethylene Composite with Recycled Radiation Cross-Linked Filler of RHDPEx. Polymers. 2018;10:1361. doi: 10.3390/polym10121361. PubMed DOI PMC

Manas D., Manas M., Mizera A., Navratil J., Ovsik M., Tomanova K., Sehnalek S. Use of Irradiated Polymers after Their Lifetime Period. Polymers. 2018;10:641. doi: 10.3390/polym10060641. PubMed DOI PMC

Casem D., Lamberson L., Kimberly J. Dynamic Behavior of Materials. Volume 1. Springer International Publishing; Berlin/Heidelberg, Germany: 2017. (Conference Proceedings of the Society for Experimental Mechanics Series). DOI

Duarte I., Vesenjak M., Krstulović-Opara L. Dynamic Compressive Behaviour of Aluminium Foams Fabricated from Rejected Precursor Materials. Ciência Tecnol. Mater. 2016;28:19–22. doi: 10.1016/j.ctmat.2016.04.001. DOI

Novak N., Vesenjak M., Tanaka S., Hokamoto K., Ren Z. Compressive Behaviour of Chiral Auxetic Cellular Structures at Different Strain Rates. Int. J. Impact Eng. 2020;141:103566. doi: 10.1016/j.ijimpeng.2020.103566. DOI

Chen L., Kim H.-S., Kim S.-K., de Cooman B.C. Localized Deformation Due to Portevin–LeChatelier Effect in 18Mn–0.6C TWIP Austenitic Steel. ISIJ Int. 2007;47:1804–1812. doi: 10.2355/isijinternational.47.1804. DOI

Labudde T., Ingendahl T., Wildau M., Saeed-Akbari A., Hoffmann S., Bleck W. Charakterisierung Der Verformungsmechanismen Bei Hoch Mn-Legierten Stählen Unter Einachsiger Zugbeanspruchung. Mater. Test. 2013;55:636–642. doi: 10.3139/120.110481. DOI

Soares G.C., Vázquez-Fernández N.I., Hokka M. Thermomechanical Behavior of Steels in Tension Studied with Synchronized Full-Field Deformation and Temperature Measurements. Exp. Tech. 2021;45:627–643. doi: 10.1007/s40799-020-00436-y. DOI

Sendrowicz A., Myhre A.O., Wierdak S.W., Vinogradov A. Challenges and Accomplishments in Mechanical Testing Instrumented by In Situ Techniques: Infrared Thermography, Digital Image Correlation, and Acoustic Emission. Appl. Sci. 2021;11:6718. doi: 10.3390/app11156718. DOI

Fan J., Chen X., Wang D., Li S., Zhao Y. Infrared Thermographic Analysis of Notch Effects on Tensile Behavior of 30CrMnSiA Steel. Infrared Phys. Technol. 2019;101:110–118. doi: 10.1016/j.infrared.2019.06.010. DOI

Chin B.L.F., Yusup S., Al Shoaibi A., Kannan P., Srinivasakannan C., Sulaiman S.A. Comparative Studies on Catalytic and Non-Catalytic Co-Gasification of Rubber Seed Shell and High Density Polyethylene Mixtures. J. Clean Prod. 2014;70:303–314. doi: 10.1016/j.jclepro.2014.02.039. DOI

Sharkeev Y.P., Vavilov V.P., Skrypnyak V.A., Legostaeva E.V., Eroshenko A.Y., Belyavskaya O.A., Ustinov A.M., Klopotov A.A., Chulkov A.O., Kozulin A.A., et al. Research on the Processes of Deformation and Failure in Coarse- and Ultrafine-Grain States of Zr1–Nb Alloys by Digital Image Correlation and Infrared Thermography. Mater. Sci. Eng. A. 2020;784:139203. doi: 10.1016/j.msea.2020.139203. DOI

Majidi O., de Cooman B.C., Barlat F., Lee M.-G., Korkolis Y.P. Thermomechanical Response of a TWIP Steel during Monotonic and Non-Monotonic Uniaxial Loading. Mater. Sci. Eng. A. 2016;674:276–285. doi: 10.1016/j.msea.2016.08.002. DOI

Żaba K., Trzepieciński T., Puchlerska S., Noga P., Balcerzak M. Coupled Thermomechanical Response Measurement of Deformation of Nickel-Based Superalloys Using Full-Field Digital Image Correlation and Infrared Thermography. Materials. 2021;14:2163. doi: 10.3390/ma14092163. PubMed DOI PMC

Novak N., Mauko A., Ulbin M., Krstulovic-Opara L., Ren Z., Vesenjak M. Development and characterisation of novel three-dimensional axisymmetric chiral auxetic structures. J. Mater. Res. Technol. 2022;17:2701–2713. doi: 10.1016/j.jmrt.2022.02.025. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...