Dynamic Behavior of Thermally Affected Injection-Molded High-Density Polyethylene Parts Modified by Accelerated Electrons
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
CZ.02.2.69/0.0/0.0/18_053/0017879-1
Ministry of Education, Youth and Sports Czech Republic
CZ.02.2.69/0.0/0.0/16_028/0006243
European Structural and Investment Funds, Operational Programme Research, Development and Education
PubMed
36433096
PubMed Central
PMC9695461
DOI
10.3390/polym14224970
PII: polym14224970
Knihovny.cz E-resources
- Keywords
- high-density polyethylene, infrared thermography, injection-molded technology, mechanical properties, radiation cross-linking, temperature stability,
- Publication type
- Journal Article MeSH
Polyethylenes are the most widely used polymers and are gaining more and more interest due to their easy processability, relatively good mechanical properties and excellent chemical resistance. The disadvantage is their low temperature stability, which excludes particular high-density polyethylenes (HDPEs) for use in engineering applications where the temperature exceeds 100 °C for a long time. One of the possibilities of improving the temperature stability of HDPE is a modification by accelerated electrons when HDPE is cross-linked by this process and it is no longer possible to process it like a classic thermoplastic, e.g., by injection technology. The HDPE modified in this way was thermally stressed five times at temperatures of 110 and 160 °C, and then the dynamic tensile behavior was determined. The deformation and surface temperature of the specimens were recorded by a high-speed infrared camera. Furthermore, two thermal methods of specimen evaluation were used: differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The result of the measurement is that the modification of HDPE by accelerated electrons had a positive effect on the dynamic tensile behavior of these materials.
Department Polymer Engineering and Science Montanuniversitaet Leoben 8700 Leoben Austria
Faculty of Applied Informatics Tomas Bata University in Zlin 760 05 Zlin Czech Republic
See more in PubMed
Amjadi M., Fatemi A. Tensile Behavior of High-Density Polyethylene Including the Effects of Processing Technique, Thickness, Temperature, and Strain Rate. Polymers. 2020;12:1857. doi: 10.3390/polym12091857. PubMed DOI PMC
Amjadi M., Fatemi A. Creep Behavior and Modeling of High-Density Polyethylene (HDPE) Polym. Test. 2021;94:107031. doi: 10.1016/j.polymertesting.2020.107031. DOI
Abeysinghe S., Gunasekara C., Bandara C., Nguyen K., Dissanayake R., Mendis P. Engineering Performance of Concrete Incorporated with Recycled High-Density Polyethylene (HDPE) Polymers. 2021;13:1885. doi: 10.3390/polym13111885. PubMed DOI PMC
Wu W.-L., Wang Y.-W. Modified High-Density Polyethylene Films: Preparation. Composition and Their Physical Properties. Indian Acad. Sci. 2020;43:143. doi: 10.1007/s12034-020-02167-7. DOI
Wen Y., Tsou C.H., Gao C., Chen J.C., Tang Z., Chen Z., Yang T., Du J., Yu Y., Suen M.C., et al. Evaluating Distillers Grains as Bio-Fillers for High-Density Polyethylene. J. Polym. Res. 2020;27:167. doi: 10.1007/s10965-020-02148-8. DOI
Silviyati I., Zubaidah N., Amin J.M., Supraptiah E., Utami R.D., Ramadhan I. The Effect of Addition of High-Density Polyethylene (HDPE) as Binder on Hebel Light Brick (Celcon) Proc. J. Phys. Conf. Ser. Inst. Phys. Publ. 2020;1500:012083. doi: 10.1088/1742-6596/1500/1/012083. DOI
Viljoen D., Fischer M., Kühnert I., Labuschagné J. The Tensile Behaviour of Highly Filled High-Density Polyethylene Quaternary Composites: Weld-Line Effects, Dic Curiosities and Shifted Deformation Mechanisms. Polymers. 2021;13:527. doi: 10.3390/polym13040527. PubMed DOI PMC
Qin S., Xu W.H., Jiang H.W., Zhang H.H., He Y., Wu T., Qu J.P. Simultaneously Achieving Self-Toughening and Self-Reinforcing of Polyethylene on an Industrial Scale Using Volume-Pulsation Injection Molding. Polymer. 2021;213:123324. doi: 10.1016/j.polymer.2020.123324. DOI
Zachariades A., Economy J. Super Strong Polymers in Planar Directions. Polym. Eng. Sci. 1983;23:266–270. doi: 10.1002/pen.760230506. DOI
Allan P.S., Bevis M.J., Gibson J.R., May C.J., Pinwill I.E. Shear Controlled Orientation Technology for The Management of Reinforcing Fibres in Moulded and Extruded Composite Materials. Mater. Process. Technol. 1996;56:272–281. doi: 10.1016/0924-0136(96)85104-1. DOI
Lei J., Jiang C., Shen K. Biaxially Self-Reinforced High-Density Polyethylene Prepared by Dynamic Packing Injection Molding. I. Processing Parameters and Mechanical Properties. J. Appl. Polym. Sci. 2004;93:1584–1590. doi: 10.1002/app.20640. DOI
Youbing L., Kaizhi S. Self-Reinforced High-Density Polyethylene Prepared by Low Frequency Vibration-Assisted Injection Molding. II: Microstructure Investigation. J. Macromol. Sci. Part B. 2010;49:242–249. doi: 10.1080/00222340903328856. DOI
Layser G.S., Coulter J.P. Localized Effects of Dynamic Melt Manipulation on Flow Induced Orientation and Mechanical Performance of Injection Molded Products. Polym. Eng. Sci. 2007;47:1912–1919. doi: 10.1002/pen.20908. DOI
Primo Benitez-Rangel J., Trejo-Hernández M., Alberto Morales-Hernández L., Domínguez-González A. Improvement of the Injection Mold Process by Using Vibration through a Mold Accessory. Mater. Manuf. Process. 2010;25:577–580. doi: 10.1080/10426910903124902. DOI
Waschitschek K., Kech A., Christiansen J.D. Influence of Push-pull Injection Moulding on Fibres and Matrix of Fibre Reinforced Polypropylene. Compos. Part A. 2002;33:735–744. doi: 10.1016/S1359-835X(02)00007-6. DOI
Liu T., Li W., Li L., Peng X., Kuang T. Effect of Dynamic Oscillation Shear Flow Intensity on the Mechanical and Morphological Properties of High-Density Polyethylene: An Integrated Experimental and Molecular Dynamics Simulation Study. Polym. Test. 2019;80:106122. doi: 10.1016/j.polymertesting.2019.106122. DOI
Chaudhary A.K., Vijayakumar R.P. Effect of Chemical Treatment on Biological Degradation of High-Density Polyethylene (HDPE) Environ. Dev. Sustain. 2020;22:1093–1104. doi: 10.1007/s10668-018-0236-6. DOI
Dany H., Dhong W.W., Jiat K.W., Leong T.K., Yuhana N.Y., Tan G. Deodorizing Methods for Recycled High-Density Polyethylene Plastic Wastes. Mater. Plast. 1964;58:129–136. doi: 10.37358/MP.21.3.5511. DOI
Yang J., Li F., Guan C., Xu X., Zhong L., Gao Y., Han Y., Yan N., Zhao G., Jiang W. Brittle-Ductile Transition of Impact PP Blends: Effect of Modulus Ratio of PP Matrix to Impact Modifier. Polym. Bull. 2022 doi: 10.1007/s00289-022-04285-0. DOI
Alsayed Z., Badawi M.S., Awad R. Investigation of Thermal and Mechanical Behavior of HDPE/ZnFe2O4 Composite. J. Inorg. Organomet Polym. Mater. 2021;31:2757–2765. doi: 10.1007/s10904-021-01903-8. DOI
Amjadi M., Fatemi A. Creep and Fatigue Behaviors of High-Density Polyethylene (HDPE): Effects of Temperature, Mean Stress, Frequency, and Processing Technique. Int. J. Fatigue. 2020;141:105871. doi: 10.1016/j.ijfatigue.2020.105871. DOI
Salakhov I.I., Shaidullin N.M., Chalykh A.E., Matsko M.A., Shapagin A.V., Batyrshin A.Z., Shandryuk G.A., Nifant’ev I.E. Low-temperature Mechanical Properties of High-density and Low-density Polyethylene and Their Blends. Polymers. 2021;13:1821. doi: 10.3390/polym13111821. PubMed DOI PMC
Kumar S., Ramesh M.R., Doddamani M., Rangappa S.M., Siengchin S. Mechanical Characterization of 3D Printed MWCNTs/HDPE Nanocomposites. Polym. Test. 2022;114:107703. doi: 10.1016/j.polymertesting.2022.107703. DOI
Naik T.P., Gairola S., Singh I., Sharma A.K. Microwave Hybrid Heating for Moulding of Sisal/Jute/HDPE Composites. J. Nat. Fibers. 2022 doi: 10.1080/15440478.2022.2100553. DOI
Al-Majali Y.T., Forshey S., Trembly J.P. Effect of Natural Carbon Filler on Thermo-Oxidative Degradation of Thermoplastic-Based Composites. Thermochim. Acta. 2022;713:179226. doi: 10.1016/j.tca.2022.179226. DOI
Yağci Ö., Eker Gümüş B., Taşdemir M. Thermal, Structural and Morphological Properties of Polypropylene and High Density Polyethylene Polymer Composites Filled with Waste Urea Formaldehyde. Polym. Bull. 2022 doi: 10.1007/s00289-022-04245-8. DOI
Chialanza M.R., Sofía S.F., Parada A.P. Modeling Microplastic with Polyethylene (PE) Spherical Particles: A Differential Scanning Calorimetry Approach for Quantification. Environ. Sci. Pollut. Res. 2022;29:2311–2324. doi: 10.1007/s11356-021-15830-1. PubMed DOI
Savini G., Oréfice R.L. Super Ductility in HDPE/EVA Blends Triggered by Synthetic Amorphous Nanotalc. J. Polym. Res. 2021;28:19. doi: 10.1007/s10965-020-02389-7. DOI
Khalid H.U., Ismail M.C., Nosbi N. Degradation Monitoring of HDPE Material in CO2-Saturated NaCl Environment through Electrochemical Impedance Spectroscopy Technique. Materials. 2021;14:2823. doi: 10.3390/ma14112823. PubMed DOI PMC
Aderikha V.N., Feipeng C., Koval V.N., Xiaoyu L., Shapovalov V.A., Makarenko O.A., Yongguang X. Increasing the Resistance of HDPE to Abrasive Wear with Small Additions of UHMWPE. J. Frict. Wear. 2022;43:1–7. doi: 10.3103/S1068366622010020. DOI
Mazur K., Jakubowska P., Romańska P., Kuciel S. Green high density polyethylene (HDPE) reinforced with basalt fiber and agricultural fillers for technical applications. J. Compos. B Eng. 2020;202:108399. doi: 10.1016/j.compositesb.2020.108399. DOI
Madi N.K. Thermal and mechanical properties of injection molded recycled high density polyethylene blends with virgin isotactic polypropylene. Mater. Des. 2013;46:435–441. doi: 10.1016/j.matdes.2012.10.004. DOI
Dolynchuk O., Kolesov I., Androsch R., Radusch H.J. Kinetics and dynamics of two-way shape-memory behavior of crosslinked linear high-density and short-chain branched polyethylenes with regard to crystal orientation. Polymer. 2015;79:146–158. doi: 10.1016/j.polymer.2015.10.017. DOI
Paajanen A., Vaari J., Verho T. Crystallization of cross-linked polyethylene by molecular dynamics simulation. Polymer. 2019;171:80–86. doi: 10.1016/j.polymer.2019.03.040. DOI
Zhao M., Ding X., Mi J., Zhou H., Wang X. Role of high-density polyethylene in the crystallization behaviors, rheological property, and supercritical CO2 foaming of poly (lactic acid) Polym. Degrad. Stab. 2017;146:277–286. doi: 10.1016/j.polymdegradstab.2017.11.003. DOI
Daramola O.O., Taiwo A.S., Oladele I.O., Olajide J.L., Adeleke S.A., Adewuyi B.O., Sadiku E.R. Mechanical properties of high density polyethylene matrix composites reinforced with chitosan particles. Mater. Today Proc. 2021;38:682–687. doi: 10.1016/j.matpr.2020.03.695. DOI
Kim P.S., Mong A.L., Kim D. Thermal, mechanical, and electrochemical stability enhancement of Al2O3 coated polypropylene/polyethylene/polypropylene separator via poly(vinylidene fluoride)-poly(ethoxylated pentaerythritol tetraacrylate) semi-interpenetrating network binder. J. Membr. Sci. 2020;612:118481. doi: 10.1016/j.memsci.2020.118481. DOI
Mizera A., Manas M., Stoklasek P. Effect of Temperature Ageing on Injection Molded High-Density Polyethylene Parts Modified by Accelerated Electrons. Materials. 2022;15:742. doi: 10.3390/ma15030742. PubMed DOI PMC
Moreno D.D.P., Saron C. Low-density polyethylene waste/recycled wood composites. Compos. Struct. 2017;176:1152–1157. doi: 10.1016/j.compstruct.2017.05.076. DOI
Mohammadi H., Vincent M., Marand H. Investigating the equilibrium melting temperature of linear polyethylene using the non-linear Hoffman-Weeks approach. Polymer. 2018;146:344–360. doi: 10.1016/j.polymer.2018.05.049. DOI
Muhammad I., Makwashi N., Manos G. Catalytic degradation of linear low-density polyethylene over HY-zeolite via pre-degradation method. J. Anal. Appl. Pyrolysis. 2019;138:10–21. doi: 10.1016/j.jaap.2018.11.025. DOI
Chriaa I., Trigui A., Karkri M., Jedidi I., Abdelmouleh M., Boudaya C.H. Thermal properties of shape-stabilized phase change materials based on Low Density Polyethylene, Hexadecane and SEBS for thermal energy storage. Appl. Therm. Eng. 2020;171:115072. doi: 10.1016/j.applthermaleng.2020.115072. DOI
Nabiyev A.A., Olejniczak A., Pawlukojc A., Balasoiu M., Bunoiu M., Maharramov A.M., Nuriyev M.A., Ismayilova R.S., Azhibekov A.K., Kabyshev A.M., et al. Nano-ZrO2 filled high-density polyethylene composites: Structure, thermal properties, and the influence γ-irradiation. Polym. Degrad. Stab. 2020;171:109042. doi: 10.1016/j.polymdegradstab.2019.109042. DOI
Ahmad H., Rodrigue D. Crosslinked Polyethylene: A Review on the Crosslinking Techniques, Manufacturing Methods, Applications, and Recycling. Polym. Eng. Sci. 2022;62:2376–2401. doi: 10.1002/pen.26049. DOI
Manas D., Manas M., Mizera A., Stoklasek P., Navratil J., Sehnalek S., Drabek P. The High Density Polyethylene Composite with Recycled Radiation Cross-Linked Filler of RHDPEx. Polymers. 2018;10:1361. doi: 10.3390/polym10121361. PubMed DOI PMC
Manas D., Manas M., Mizera A., Navratil J., Ovsik M., Tomanova K., Sehnalek S. Use of Irradiated Polymers after Their Lifetime Period. Polymers. 2018;10:641. doi: 10.3390/polym10060641. PubMed DOI PMC
Casem D., Lamberson L., Kimberly J. Dynamic Behavior of Materials. Volume 1. Springer International Publishing; Berlin/Heidelberg, Germany: 2017. (Conference Proceedings of the Society for Experimental Mechanics Series). DOI
Duarte I., Vesenjak M., Krstulović-Opara L. Dynamic Compressive Behaviour of Aluminium Foams Fabricated from Rejected Precursor Materials. Ciência Tecnol. Mater. 2016;28:19–22. doi: 10.1016/j.ctmat.2016.04.001. DOI
Novak N., Vesenjak M., Tanaka S., Hokamoto K., Ren Z. Compressive Behaviour of Chiral Auxetic Cellular Structures at Different Strain Rates. Int. J. Impact Eng. 2020;141:103566. doi: 10.1016/j.ijimpeng.2020.103566. DOI
Chen L., Kim H.-S., Kim S.-K., de Cooman B.C. Localized Deformation Due to Portevin–LeChatelier Effect in 18Mn–0.6C TWIP Austenitic Steel. ISIJ Int. 2007;47:1804–1812. doi: 10.2355/isijinternational.47.1804. DOI
Labudde T., Ingendahl T., Wildau M., Saeed-Akbari A., Hoffmann S., Bleck W. Charakterisierung Der Verformungsmechanismen Bei Hoch Mn-Legierten Stählen Unter Einachsiger Zugbeanspruchung. Mater. Test. 2013;55:636–642. doi: 10.3139/120.110481. DOI
Soares G.C., Vázquez-Fernández N.I., Hokka M. Thermomechanical Behavior of Steels in Tension Studied with Synchronized Full-Field Deformation and Temperature Measurements. Exp. Tech. 2021;45:627–643. doi: 10.1007/s40799-020-00436-y. DOI
Sendrowicz A., Myhre A.O., Wierdak S.W., Vinogradov A. Challenges and Accomplishments in Mechanical Testing Instrumented by In Situ Techniques: Infrared Thermography, Digital Image Correlation, and Acoustic Emission. Appl. Sci. 2021;11:6718. doi: 10.3390/app11156718. DOI
Fan J., Chen X., Wang D., Li S., Zhao Y. Infrared Thermographic Analysis of Notch Effects on Tensile Behavior of 30CrMnSiA Steel. Infrared Phys. Technol. 2019;101:110–118. doi: 10.1016/j.infrared.2019.06.010. DOI
Chin B.L.F., Yusup S., Al Shoaibi A., Kannan P., Srinivasakannan C., Sulaiman S.A. Comparative Studies on Catalytic and Non-Catalytic Co-Gasification of Rubber Seed Shell and High Density Polyethylene Mixtures. J. Clean Prod. 2014;70:303–314. doi: 10.1016/j.jclepro.2014.02.039. DOI
Sharkeev Y.P., Vavilov V.P., Skrypnyak V.A., Legostaeva E.V., Eroshenko A.Y., Belyavskaya O.A., Ustinov A.M., Klopotov A.A., Chulkov A.O., Kozulin A.A., et al. Research on the Processes of Deformation and Failure in Coarse- and Ultrafine-Grain States of Zr1–Nb Alloys by Digital Image Correlation and Infrared Thermography. Mater. Sci. Eng. A. 2020;784:139203. doi: 10.1016/j.msea.2020.139203. DOI
Majidi O., de Cooman B.C., Barlat F., Lee M.-G., Korkolis Y.P. Thermomechanical Response of a TWIP Steel during Monotonic and Non-Monotonic Uniaxial Loading. Mater. Sci. Eng. A. 2016;674:276–285. doi: 10.1016/j.msea.2016.08.002. DOI
Żaba K., Trzepieciński T., Puchlerska S., Noga P., Balcerzak M. Coupled Thermomechanical Response Measurement of Deformation of Nickel-Based Superalloys Using Full-Field Digital Image Correlation and Infrared Thermography. Materials. 2021;14:2163. doi: 10.3390/ma14092163. PubMed DOI PMC
Novak N., Mauko A., Ulbin M., Krstulovic-Opara L., Ren Z., Vesenjak M. Development and characterisation of novel three-dimensional axisymmetric chiral auxetic structures. J. Mater. Res. Technol. 2022;17:2701–2713. doi: 10.1016/j.jmrt.2022.02.025. DOI