Moth Diversity Increases along a Continent-Wide Gradient of Environmental Productivity in South African Savannahs
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
20-29554X and 18-18495S
Czech Science Foundation
PRIMUS/17/SCI/8 and UNCE204069
Charles University
PubMed
36135479
PubMed Central
PMC9500993
DOI
10.3390/insects13090778
PII: insects13090778
Knihovny.cz E-resources
- Keywords
- Afrotropics, Heterocera, NDVI, abundance, diversity patterns, insect, lepidoptera, light trapping, primary productivity, savannah ecosystems,
- Publication type
- Journal Article MeSH
Environmental productivity, i.e., the amount of biomass produced by primary producers, belongs among the key factors for the biodiversity patterns. Although the relationship of diversity to environmental productivity differs among studied taxa, detailed data are largely missing for most groups, including insects. Here, we present a study of moth diversity patterns at local and regional scales along a continent-wide gradient of environmental productivity in southern African savannah ecosystems. We sampled diversity of moths (Lepidoptera: Heterocera) at 120 local plots along a gradient of normalized difference vegetation index (NDVI) from the Namib Desert to woodland savannahs along the Zambezi River. By standardized light trapping, we collected 12,372 specimens belonging to 487 moth species. The relationship between species richness for most analyzed moth groups and environmental productivity was significantly positively linear at the local and regional scales. The absence of a significant relationship of most moth groups' abundance to environmental productivity did not support the role of the number of individuals in the diversity-productivity relationship for south African moths. We hypothesize the effects of water availability, habitat complexity, and plant diversity drive the observed moth diversity patterns.
See more in PubMed
Waide R.B., Willig M.R., Steiner C.F., Mittelbach G., Gough L., Dodson S.I., Juday G.P., Parmenter R. The Relationship between Productivity and Species Richness. Annu. Rev. Ecol. Syst. 1999;30:257–300. doi: 10.1146/annurev.ecolsys.30.1.257. DOI
Mittelbach G.G., Steiner C.F., Scheiner S.M., Gross K.L., Reynolds H.L., Waide R.B., Willig M.R., Dodson S.I., Gough L. What Is the Observed Relationship between Species Richness and Productivity? Ecology. 2001;82:2381–2396. doi: 10.1890/0012-9658(2001)082[2381:WITORB]2.0.CO;2. DOI
Storch D. Biodiversity and Its Energetic and Thermal Controls. In: Sibly R.M., Brown J.H., Kodric-Brown A., editors. Metabolic Ecology. Wiley; Hoboken, NJ, USA: 2012. pp. 120–131.
Pontarp M., Bunnefeld L., Cabral J.S., Etienne R.S., Fritz S.A., Gillespie R., Graham C.H., Hagen O., Hartig F., Huang S., et al. The Latitudinal Diversity Gradient: Novel Understanding through Mechanistic Eco-Evolutionary Models. Trends Ecol. Evol. 2019;34:211–223. doi: 10.1016/j.tree.2018.11.009. PubMed DOI
Bohdalková E., Toszogyova A., Šímová I., Storch D. Universality in Biodiversity Patterns: Variation in Species-Temperature and Species-Productivity Relationships Reveals a Prominent Role of Productivity in Diversity Gradients. Ecography. 2021;44:1366–1378. doi: 10.1111/ecog.05613. DOI
Grime J.P. Competitive Exclusion in Herbaceous Vegetation. Nature. 1973;242:344–347. doi: 10.1038/242344a0. DOI
Wright D.H. Species-Energy Theory: An Extension of Species-Area Theory. Oikos. 1983;41:496. doi: 10.2307/3544109. DOI
Hurlbert A.H., Stegen J.C. When Should Species Richness Be Energy Limited, and How Would We Know? Ecol. Lett. 2014;17:401–413. doi: 10.1111/ele.12240. PubMed DOI
Srivastava D.S., Lawton J.H. Why More Productive Sites Have More Species: An Experimental Test of Theory Using Tree-Hole Communities. Am. Nat. 1998;152:510–529. doi: 10.1086/286187. PubMed DOI
Storch D., Bohdalková E., Okie J. The More-Individuals Hypothesis Revisited: The Role of Community Abundance in Species Richness Regulation and the Productivity-Diversity Relationship. Ecol. Lett. 2018;21:920–937. doi: 10.1111/ele.12941. PubMed DOI
Currie D.J., Mittelbach G.G., Cornell H.V., Field R., Guegan J.-F., Hawkins B.A., Kaufman D.M., Kerr J.T., Oberdorff T., O’Brien E., et al. Predictions and Tests of Climate-Based Hypotheses of Broad-Scale Variation in Taxonomic Richness. Ecol. Lett. 2004;7:1121–1134. doi: 10.1111/j.1461-0248.2004.00671.x. DOI
Šímová I., Storch D., Keil P., Boyle B., Phillips O.L., Enquist B.J. Global Species-Energy Relationship in Forest Plots: Role of Abundance, Temperature and Species Climatic Tolerances: Global Species-Energy in Forest Plots. Glob. Ecol. Biogeogr. 2011;20:842–856. doi: 10.1111/j.1466-8238.2011.00650.x. DOI
Šímová I., Storch D. The Enigma of Terrestrial Primary Productivity: Measurements, Models, Scales and the Diversity-Productivity Relationship. Ecography. 2017;40:239–252. doi: 10.1111/ecog.02482. DOI
Chase J.M., Leibold M.A. Spatial Scale Dictates the Productivity—Biodiversity Relationship. Nature. 2002;416:427–430. doi: 10.1038/416427a. PubMed DOI
Cusens J., Wright S.D., McBride P.D., Gillman L.N. What Is the Form of the Productivity—Animal-Species-Richness Relationship? A Critical Review and Meta-Analysis. Ecology. 2012;93:2241–2252. doi: 10.1890/11-1861.1. PubMed DOI
Lightfoot D.C., Whitford W.G. Productivity of Creosotebush Foliage and Associated Canopy Arthropods Along a Desert Roadside. Am. Midl. Nat. 1991;125:310. doi: 10.2307/2426235. DOI
Wenninger E.J., Inouye R.S. Insect Community Response to Plant Diversity and Productivity in a Sagebrush–Steppe Ecosystem. J. Arid Environ. 2008;72:24–33. doi: 10.1016/j.jaridenv.2007.04.005. DOI
Bailey S.-A., Horner-Devine M.C., Luck G., Moore L.A., Carney K.M., Anderson S., Betrus C., Fleishman E. Primary Productivity and Species Richness: Relationships among Functional Guilds, Residency Groups and Vagility Classes at Multiple Spatial Scales. Ecography. 2004;27:207–217. doi: 10.1111/j.0906-7590.2004.03631.x. DOI
Seto K.C., Fleishman E., Fay J.P., Betrus C.J. Linking Spatial Patterns of Bird and Butterfly Species Richness with Landsat TM Derived NDVI. Int. J. Remote Sens. 2004;25:4309–4324. doi: 10.1080/0143116042000192358. DOI
Kaspari M., Ward P.S., Yuan M. Energy Gradients and the Geographic Distribution of Local Ant Diversity. Oecologia. 2004;140:407–413. doi: 10.1007/s00442-004-1607-2. PubMed DOI
Brasil L.S., Silverio D.V., Cabette H.S.R., Batista J.D., Vieira T.B., Dias-Silva K., de Oliveira-Junior J.M.B., de Carvalho F.G., Calvão L.B., Macedo M.N., et al. Net Primary Productivity and Seasonality of Temperature and Precipitation Are Predictors of the Species Richness of the Damselflies in the Amazon. Basic Appl. Ecol. 2019;35:45–53. doi: 10.1016/j.baae.2019.01.001. DOI
Kerr J.T., Southwood T.R.E., Cihlar J. Remotely Sensed Habitat Diversity Predicts Butterfly Species Richness and Community Similarity in Canada. Proc. Natl. Acad. Sci. USA. 2001;98:11365–11370. doi: 10.1073/pnas.201398398. PubMed DOI PMC
Hawkins B.A., Porter E.E. Water-Energy Balance and the Geographic Pattern of Species Richness of Western Palearctic Butterflies: Water-Energy Balance and Butterfly Species Richness. Ecol. Entomol. 2003;28:678–686. doi: 10.1111/j.1365-2311.2003.00551.x. DOI
Vinson M.R., Hawkins C.P. Broad-Scale Geographical Patterns in Local Stream Insect Genera Richness. Ecography. 2003;26:751–767. doi: 10.1111/j.0906-7590.2003.03397.x. DOI
Ballesteros-Mejia L., Kitching I.J., Jetz W., Nagel P., Beck J. Mapping the Biodiversity of Tropical Insects: Species Richness and Inventory Completeness of African Sphingid Moths: Mapping the Biodiversity of Tropical Insects. Glob. Ecol. Biogeogr. 2013;22:586–595. doi: 10.1111/geb.12039. DOI
Murphy B.P., Andersen A.N., Parr C.L. The Underestimated Biodiversity of Tropical Grassy Biomes. Phil. Trans. R. Soc. B. 2016;371:20150319. doi: 10.1098/rstb.2015.0319. PubMed DOI PMC
Davis C.L., Vincent K. Climate Risk and Vulnerability: A Handbook for Southern Africa. Council for Scientific and Industrial Research; Stellenbosch, South Africa: 2017.
Delabye S., Sedláček O., Maicher V., Tropek R. New Records of Six Moth (Lepidoptera: Erebidae, Lasiocampidae) Species in South African Countries, with Comments on Their Distribution. Biodivers. Data J. 2020;8:e59339. doi: 10.3897/BDJ.8.e59339. PubMed DOI PMC
Tucker C.J., Pinzon J.E., Brown M.E., Slayback D.A., Pak E.W., Mahoney R., Vermote E.F., El Saleous N. An Extended AVHRR 8-km NDVI Dataset Compatible with MODIS and SPOT Vegetation NDVI Data. Int. J. Remote Sens. 2005;26:4485–4498. doi: 10.1080/01431160500168686. DOI
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2020.
Beck J., Schwanghart W. Comparing Measures of Species Diversity from Incomplete Inventories: An Update: Measuring Diversity from Incomplete Inventories. Methods Ecol. Evol. 2010;1:38–44. doi: 10.1111/j.2041-210X.2009.00003.x. DOI
Levanoni O., Levin N., Pe’er G., Turbé A., Kark S. Can We Predict Butterfly Diversity along an Elevation Gradient from Space? Ecography. 2011;34:372–383. doi: 10.1111/j.1600-0587.2010.06460.x. DOI
Peters M.K., Hemp A., Appelhans T., Behler C., Classen A., Detsch F., Ensslin A., Ferger S.W., Frederiksen S.B., Gebert F., et al. Predictors of Elevational Biodiversity Gradients Change from Single Taxa to the Multi-Taxa Community Level. Nat. Commun. 2016;7:13736. doi: 10.1038/ncomms13736. PubMed DOI PMC
Cardoso P., Leather S.R. Predicting a Global Insect Apocalypse: Insect Apocalypse. Insect Conserv. Divers. 2019;12:263–267.
Vagle G.L., McCain C.M. Natural Population Variability May Be Masking the More-individuals Hypothesis. Ecology. 2020;101:e03035. PubMed
O’Brien E.M. Climatic Gradients in Woody Plant Species Richness: Towards an Explanation Based on an Analysis of Southern Africa’s Woody Flora. J. Biogeogr. 1993;20:181. doi: 10.2307/2845670. DOI
Hejda M., Čuda J., Pyšková K., Zambatis G., Foxcroft L.C., MacFadyen S., Storch D., Tropek R., Pyšek P. Water Availability, Bedrock, Disturbance by Herbivores, and Climate Determine Plant Diversity in South-African Savanna. Sci. Rep. 2022;12:338. PubMed PMC
Siebert A. Hydroclimate Extremes in Africa: Variability, Observations and Modeled Projections: Hydroclimate Extremes in Africa. Geogr. Compass. 2014;8:351–367.
Buckley L.B., Hurlbert A.H., Jetz W. Broad-Scale Ecological Implications of Ectothermy and Endothermy in Changing Environments: Ectothermy and Endothermy. Glob. Ecol. Biogeogr. 2012;21:873–885.
Lawton J.H. Plant Architecture and the Diversity of Phytophagous Insects. Annu. Rev. Entomol. 1983;28:23–39. doi: 10.1146/annurev.en.28.010183.000323. DOI
Tews J., Brose U., Grimm V., Tielbörger K., Wichmann M.C., Schwager M., Jeltsch F. Animal Species Diversity Driven by Habitat Heterogeneity/Diversity: The Importance of Keystone Structures: Animal Species Diversity Driven by Habitat Heterogeneity. J. Biogeogr. 2004;31:79–92.
Delabye S., Maicher V., Sáfián S., Doležal J., Altman J., Janeček Š., Kobe I.N., Murkwe M., Šebek P., Tropek R. Butterfly and Moth Communities Differ in Their Response to Habitat Structure in Rainforests of Mount Cameroon. Biotropica. 2021;53:567–580.
Novotny V., Drozd P., Miller S.E., Kulfan M., Janda M., Basset Y., Weiblen G.D. Why Are There So Many Species of Herbivorous Insects in Tropical Rainforests? Science. 2006;313:1115–1118. PubMed
Adler P.B., Seabloom E.W., Borer E.T., Hillebrand H., Hautier Y., Hector A., Harpole W.S., O’Halloran L.R., Grace J.B., Anderson T.M., et al. Productivity Is a Poor Predictor of Plant Species Richness. Science. 2011;333:1750–1753. PubMed
Fraser L.H., Pither J., Jentsch A., Sternberg M., Zobel M., Askarizadeh D., Bartha S., Beierkuhnlein C., Bennett J.A., Bittel A., et al. Worldwide Evidence of a Unimodal Relationship between Productivity and Plant Species Richness. Science. 2015;349:302–305. PubMed