Water availability, bedrock, disturbance by herbivores, and climate determine plant diversity in South-African savanna

. 2022 Jan 10 ; 12 (1) : 338. [epub] 20220110

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35013353

Grantová podpora
18-18495S Grantová Agentura České Republiky
18-18495S Grantová Agentura České Republiky
18-18495S Grantová Agentura České Republiky
18-18495S Grantová Agentura České Republiky
DSI-NRF Universiteit Stellenbosch
UNCE204069 Univerzita Karlova v Praze
PRIMUS/17/SCI/8 Univerzita Karlova v Praze

Odkazy

PubMed 35013353
PubMed Central PMC8748544
DOI 10.1038/s41598-021-02870-3
PII: 10.1038/s41598-021-02870-3
Knihovny.cz E-zdroje

To identify factors that drive plant species richness in South-African savanna and explore their relative importance, we sampled plant communities across habitats differing in water availability, disturbance, and bedrock, using the Kruger National Park as a model system. We made plant inventories in 60 plots of 50 × 50 m, located in three distinct habitats: (i) at perennial rivers, (ii) at seasonal rivers with water available only during the rainy season, and (iii) on crests, at least ~ 5 km away from any water source. We predicted that large herbivores would utilise seasonal rivers' habitats less intensely than those along perennial rivers where water is available throughout the year, including dry periods. Plots on granite harboured more herbaceous and shrub species than plots on basalt. The dry crests were poorer in herb species than both seasonal and perennial rivers. Seasonal rivers harboured the highest numbers of shrub species, in accordance with the prediction of the highest species richness at relatively low levels of disturbance and low stress from the lack of water. The crests, exposed to relatively low pressure from grazing but stressed by the lack of water, are important from the conservation perspective because they harbour typical, sometimes rare savanna species, and so are seasonal rivers whose shrub richness is stimulated and maintained by the combination of moderate disturbance imposed by herbivores and position in the middle of the water availability gradient. To capture the complexity of determinants of species richness in KNP, we complemented the analysis of the above local factors by exploring large-scale factors related to climate, vegetation productivity, the character of dominant vegetation, and landscape features. The strongest factor was temperature; areas with the highest temperatures reveal lower species richness. Our results also suggest that Colophospermum mopane, a dominant woody species in the north of KNP is not the ultimate cause of the lower plant diversity in this part of the park.

Zobrazit více v PubMed

Gaston KJ, Jackson SF, Cantú-Salazar L, Cruz-Piñón G. The ecological performance of protected areas. Annu. Rev. Ecol. Evol. Syst. 2008;39:93–113.

Staver AC, Abraham JO, Hempson GP, Karp AT, Faith JT. The past, present, and future of herbivore impacts on savanna vegetation. J. Ecol. 2021;109:2804–2822.

Bond WJ. Keystone species. In: Schulze ED, Mooney HA, editors. Biodiversity and Ecosystem Function. Springer; 1994. pp. 237–253.

Cole MM. The influence of soils, geomorphology and geology on the distribution of plant communities in savanna ecosystems. In: Huntley BJ, Walker BH, editors. Ecology of Tropical Savannas. Springer; 1982. pp. 145–174.

Huntley BJ, Walker BH, editors. Ecology of Tropical Savannas. Springer; 1982.

Frost P, Medina E, Menaut J-C, Solbrig O, Swift M, Walker B. Responses of Savannas to Stress and Disturbance: A Proposal for a Collaborative Programme of Research. Biology International 10; 1985.

Medina E, Silva JF. Savannas of northern South America: A steady state regulated by water-–ire interactions on a background of low nutrient availability. J. Biogeogr. 1990;17:403–413.

Fensham RJ, Fairfax RJ, Archer SR. Rainfall, land use and woody vegetation cover change in semi-arid Australian savanna. J. Ecol. 2005;93:596–606.

Mucina L, Rutherford MC. The Vegetation of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute; 2006.

Staver AC, Botha J, Hedin L. Soils and fire jointly determine vegetation structure in an African savanna. New Phytol. 2017;216:1151–1160. PubMed

Jakubka D, et al. Effects of climate, habitat and land use on the cover and diversity of the savanna herbaceous layer in Burkina-Faso, West Africa. Folia Geobot. 2017;52:129–142.

Bond WJ. Open Ecosystems: Ecology and Evolution Beyond the Forest Edge. Oxford University Press; 2019.

O’Connor TG. Composition and population responses of an African savanna grassland to rainfall and grazing. J. Appl. Ecol. 1994;31:155–171.

Walker B, Langridge J. Predicting savanna vegetation structure on the basis of plant available moisture (PAM) and plant available nutrients (PAN): A case study from Australia. J. Biogeogr. 1997;24:813–825.

Sankaran M, et al. Determinants of woody cover in African savannas. Nature. 2005;438:846–849. PubMed

Bucini G, Hanan NP. A continental-scale analysis of tree cover in African savannas. Glob. Ecol. Biogeogr. 2007;16:593–605.

Venter, F. J., Scholes, R. J. & Eckhardt, H. C. The abiotic template and its associated vegetation pattern. In The Kruger Experience: Ecology and Management of Savanna Heterogeneity (eds du Toit, J. T. et al.) 83–129 (Island Press, Washington, D.C., 2003).

Valeix M, et al. Vegetation structure and ungulate abundance over a period of increasing elephant abundance in Hwange National Park, Zimbabwe. J. Trop. Ecol. 2007;23:87–93.

Asner GP, et al. Large-scale impacts of herbivores on the structural diversity of African savannas. Proc. Natl Acad. Sci. USA. 2009;106:4947–4952. PubMed PMC

Archibald S, Hempson GP. Competing consumers: Contrasting the patterns and impacts of fire and mammalian herbivory in Africa. Philos. Trans. R. Soc. B. 2016;371:20150309. PubMed PMC

Archibald S, Bond WJ, Stock WD, Fairbanks DHK. Shaping the landscape: Fire–grazer interactions in an African savanna. Ecol. Appl. 2005;15:96–109.

Staver AC, Bond WJ. Is there a ‘browse trap’? Dynamics of herbivore impacts on trees and grasses in an African savanna. J. Ecol. 2014;102:595–602.

Jeltsch F, Weber GE, Grimm V. Ecological buffering mechanisms in savannas: A unifying theory of long-term tree-grass coexistence. Plant Ecol. 2000;105:161–171.

February EC, Higgins SI, Bond WJ, Swemmer L. Influence of competition and rainfall manipulation on the growth responses of savanna trees and grasses. Ecology. 2013;94:1155–1164. PubMed

Savadogo P, Tiveau D, Sawadogo L, Tigabu M. Herbaceous species responses to long-term effects of prescribed fire, grazing and selective tree cutting in the savanna-woodlands of West Africa. Perspect. Plant Ecol. Evol. Syst. 2008;10:179–195.

Smith MD, et al. Long-term effects of fire frequency and season on herbaceous vegetation in savannas of the Kruger National Park, South Africa. J. Plant Ecol. 2013;6:71–83.

Thrash I. Impact of water provision on herbaceous vegetation in Kruger National Park, South Africa. J. Arid Environ. 1998;38:437–450.

Staver AC, Bond WJ, Stock WD, van Rensburg SJ, Waldram MS. Browsing and fire interact to suppress tree density in an African savanna. Ecol. Appl. 2009;19:1909–1919. PubMed

Smit IPJ, Ferreira SM. Management intervention affects river-bound spatial dynamics of elephants. Biol. Conserv. 2010;143:2172–2181.

Loarie SR, van Aarde RJ, Pimm SL. Elephant seasonal vegetation preferences across dry and wet savannas. Biol. Conserv. 2009;142:3099–3107.

Young KD, Ferreira SM, Van Aarde RJ. Elephant spatial use in wet and dry savannas of southern Africa. J. Zool. 2009;278:189–205.

Codron J, et al. Elephant (Loxodonta africana) diets in Kruger National Park, South Africa: spatial and landscape differences. J. Mammal. 2006;87:27–34.

Timberlake J. Colophospermum mopane: Annotated Bibliography and Review. Zimbabwe Bulletin of Forestry Research No. 11; 1995.

Pyšek P, et al. Into the great wide open: Do alien plants spread from rivers to dry savanna in the Kruger National Park? NeoBiota. 2020;60:61–77.

Eckhardt HC, van Wilgen BW, Biggs HC. Trends in woody vegetation cover in the Kruger National Park, South Africa, between 1940 and 1998. Afr. J. Ecol. 2000;38:108–115.

Groen, T. A. Spatial Matters: How Spatial Patterns and Processes Affect Savanna Dynamics. PhD Thesis, Wageningen University, The Netherlands (2007).

MacFadyen S, Hui C, Verburg PH, Van Teeffelen AJA. Quantifying spatiotemporal drivers of environmental heterogeneity in Kruger National Park, South Africa. Landsc. Ecol. 2016;31:2013–2029.

Munyati C, Ratshibvumo T. Differentiating geological fertility derived vegetation zones in Kruger National Park, SouthAfrica, using Landsat and MODIS imagery. J. Nat. Conserv. 2010;18:169–179.

Colgan MS, Asner GP, Levick SR, Martin RE, Chadwick OA. Topo-edaphic controls over woody plant biomass in South African savannas. Biogeosciences. 2012;9:1809–1821.

Walter H, Burnett JH. Ecology of Tropical and Subtropical Vegetation. Oliver and Boyd; 1971.

Scholes RJ, Bond WJ, Eckhardt HC. Vegetation dynamics in the Kruger ecosystem. In: du Toit JT, Rogers KH, Biggs HC, editors. The Kruger Experience: Ecology and Management of Savanna Heterogeneity. Island Press; 2003. pp. 243–262.

Knoop WT, Walker BH. Interactions of woody and herbaceous vegetation in southern African savanna. J. Ecol. 1985;73:235–253.

Tilman D. The resource-ratio hypothesis of plant succession. Am. Nat. 1985;125:827–852.

Scholes RJ, Archer SR. Tree–grass interactions in savannas. Annu. Rev. Ecol. Syst. 1997;28:517–544.

Muvengwi J, Davies AB, Parrini F, Witkowski ETF. Contrasting termite diversity and assemblages on granitic and basaltic African savanna landscapes. Insect. Soc. 2018;65:25–35.

Trollope WSW, Potgieter ALF, Zambatis N. Assessing veld condition in the Kruger National Park using key grass species. Koedoe. 1989;32:67–93.

Ehleringer JR, Monson RK. Evolutionary and ecological aspects of photosynthetic pathway variation. Annu. Rev. Ecol. Syst. 1993;24:411–439.

Chytrý M, Tichý L, Roleček J. Local and regional patterns of species richness in Central European vegetation types along the pH/calcium gradient. Folia Geobot. 2003;38:429–442.

Owen-Smith N, Page B, Teren G, Druce DJ. Megabrowser impacts on woody vegetation in savannas. In: Scogings PF, Sankaran M, editors. Savanna Woody Plants and Large Herbivores. Wiley; 2019. pp. 585–611.

Nasseri NA, McBrayer LD, Schulte BA. The impact of tree modification by African elephant (Loxodonta africana) on herpetofaunal species richness in northern Tanzania. Afr. J. Ecol. 2010;49:133–140.

Asner GP, Levick SR. Landscape-scale effects of herbivores on treefall in African savannas. Ecol. Lett. 2012;15:1211–1217. PubMed

Haynes G. Elephants (and extinct relatives) as earth-movers and ecosystem engineers. Geomorphology. 2012;157:99–107.

Kruger, L. M., Coetzee, J. A. & Vickers, K. The Impacts of Elephants on Woodlands and Associated Biodiversity (Summary report to South African National Parks, Organization for Tropical Studies, 2007).

Guy PR. The influence of elephants and fire on a Brachystegia julbernardia woodland in Zimbabwe. J. Trop. Ecol. 1989;5:215–226.

Laws RM, Parker ISC, Johnstone RCB. Elephants and Their Habitats: The Ecology of Elephants in North Bunyoro, Uganda. Clarendon Press; 1975.

Thompson PJ. The role of elephants, fire and other agents in the decline of Brachystegia woodlands. J. S. Afr. Wildl. Manag. Assoc. 1975;5:11–18.

Barnes ME. Effects of large herbivores and fire on the regeneration of Acacia erioloba woodlands in Chobe National Park, Botswana. Afr. J. Ecol. 2001;39:340–350.

Scogings PF, Johansson T, Hjältén J, Kruger J. Responses of woody vegetation to exclusion of large herbivores in semi-arid savannas. Austral Ecol. 2012;37:56–66.

Verweij RJT, Higgins SI, Bond WJ, February EC. Water sourcing by trees in a mesic savanna: Responses to severing deep and shallow roots. Environ. Exp. Bot. 2011;74:229–236.

Smit I, et al. Effects of fire on woody vegetation structure in African savanna. Ecol. Appl. 2010;20:1865–1875. PubMed

MacFadyen S, Hui C, Verburg PH, Van Teeffelen AJA. Spatiotemporal distribution dynamics of elephants in response to density, rainfall, rivers and fire in Kruger National Park, South Africa. Divers. Distrib. 2019;25:880–894.

O’Connor TG, Goodman PS, Clegg B. A functional hypothesis of the threat of local extirpation of woody plant species by elephant in Africa. Biol. Conserv. 2007;136:329–345.

Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006. NASA EOSDIS Land Processes DAAC. Accessed 2021-06-08 from 10.5067/MODIS/MOD13Q1.006 (2015).

Kreft H, Jetz W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. 2007;104:5925–5930. PubMed PMC

Bohdalková E, Töszögyová A, Šímová I, Storch D. Universality in biodiversity patterns: variation in species-temperature and species-productivity relationships reveals a prominent role of productivity in diversity gradients. Ecography. 2021;44:1366–1378.

Knight RS, Crowe TM, Siegfried WR. Distribution and species richness of trees in southern Africa. J. S. Afr. Bot. 1982;48:455–480.

Gaylard A, Owen-Smith N, Redfern J. Surface water availability: implications for heterogeneity and ecosystem processes. In: du Toit JT, Rogers KH, Biggs HC, editors. The Kruger Experience: Ecology and Management of Savanna Heterogeneity. Island Press; 2003. pp. 171–188.

Venter, F. J. A Classification of Land for Management Planning in the Kruger National Park. PhD Thesis, University of South Africa (1990).

du Toit JT, Rogers KH, Biggs HC, editors. The Kruger Experience: Ecology and Management of Savanna Heterogeneity. Island Press; 2003.

Smit IPJ, Smit CF, Govender N, van der Linde M, MacFadyen S. Rainfall, geology and landscape position generate large-scale spatiotemporal fire pattern heterogeneity in an African savanna. Ecography. 2013;36:447–459.

Obermeijer AA. A preliminary list of plants found in the Kruger National Park. Ann. Transvaal Mus. 1937;17:185–227.

van der Schijff, H. P. 'n Ekologiese Studie van die Flora van die Nasionale Krugerwildtuin. D.Sc. Thesis, Potchefstroom University (1957).

van der Schijff HP. The affinities of the flora of the Kruger National Park. Kirkia. 1968;7:109–120.

Coetzee, B. J. Phytosociology, Vegetation Structure and Landscapes of the Central District. Kruger National Park, South Africa. Dissertationes Botanicae, J. Cramer, Vaduz (1983).

Gertenbach WPD. Landscapes of the Kruger National Park. Koedoe. 1983;26:9–121.

Siebert F, Eckhardt HC. The vegetation and floristics of the Nkhuhlu exclosures, Kruger National Park. Koedoe. 2008;50:126–144.

Siebert F, Eckhardt HC, Siebert SJ. The vegetation and floristics of the Letaba exclosures, Kruger National Park, South Africa. Koedoe. 2010;52:1–12.

Wigley BJ, Fritz H, Coetsee C, Bond WJ. Herbivores shape woody plant communities in the Kruger National Park: Lessons from three long-term exclosures. Koedoe. 2014;56:1–12.

Enslin BW, Potgieter ALF, Biggs HC, Biggs R. Long term effects of fire frequency and season on the woody vegetation dynamics of the Sclerocarya birrea/Acacia nigrescens savanna of the Kruger National Park. Koedoe. 2000;43:27–37.

Brits J, Van Rooyen MW, Van Rooyen N. Ecological impact of large herbivores on the woody vegetation at selected watering points on the eastern basaltic soils in the Kruger National Park. Afr. J. Ecol. 2002;40:53–60.

Todd SW. Gradients in vegetation cover, structure and species richness of Nama-Karoo shrublands in relation to distance from livestock watering points. J. Appl. Ecol. 2006;43:293–304.

Foxcroft LC, Henderson L, Nichols GR, Martin BW. A revised list of alien plants for the Kruger National Park. Koedoe. 2003;46:21–44.

Foxcroft LC, Richardson DM, Wilson JR. Ornamental plants as invasive aliens: Problems and solutions in Kruger National Park, South Africa. Environ. Manag. 2008;41:32–51. PubMed

Mueller-Dombois D, Ellenberg H. Aims and Methods of Vegetation Ecology. Wiley; 1974.

van der Maarel E. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio. 1979;38:97–114.

Magurran AE. Ecological Diversity and Its Measurement. Croom Helm; 1988.

Pooley E. Wildflowers of Kwazulu-Natal and the Eastern Region. Natal Flora Publications Trust; 1998.

Schmidt E, Lötter M, McCleland W. Trees and Shrubs of Mpumalanga and Kruger National Park. Jacana Media; 2002.

van der Walt R. Wild Flowers of the Limpopo Valley. Retha van der Walt; 2009.

Oudtshoorn FV. Guide to Grasses of Southern Africa. 3. Briza Publications; 2018.

R Development Core Team . R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2013.

Lenth, R. Emmeans: Estimated Marginal Means, aka Least-Square Means. R package version 1.2.1. https://CRAN.R-project.org/package=emmeans (2018).

Lepš J, Šmilauer P. Multivariate Analysis of Ecological Data Using CANOCO 5. Cambridge University Press; 2014.

Dray S, Legendre P, Peres-Neto PR. Spatial modelling: A comprehensive framework 562 for principal coordinate analysis of neighbour matrices (PCNM) Ecol. Modell. 2006;196:483–563.

Šmilauer P, Lepš J. Multivariate Analysis of Ecological Data Using Canoco 5. 2. Cambridge University Press; 2014.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...