Use of Irradiated Polymers after Their Lifetime Period
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30966675
PubMed Central
PMC6404028
DOI
10.3390/polym10060641
PII: polym10060641
Knihovny.cz E-zdroje
- Klíčová slova
- end-of-life cycle, mechanical properties, polymer recycling, polymers, radiation cross-linking,
- Publikační typ
- časopisecké články MeSH
This article deals with the study of the utilisation of irradiated HDPE products after their end-of-life cycle. Today, polymer waste processing is a matter of evermore intensive discussion. Common thermoplastic waste recycling-especially in the case of wastes with a defined composition-is generally well-known-and frequently used. On the contrary, processing cross-linked plastics is impossible to do in the same way as with virgin thermoplastics-mainly due to the impossibility of remelting them. The possibility of using waste in the form of grit or a powder, made from cross-linked High Density PolyEthylene (rHDPEx) products, after their end-of-life cycle, as a filler for virgin Low Density PolyEthylene (LDPE) was tested in a matrix. It was found that both the mechanical behaviour and processability of new composites with an LDPE matrix, with rHDPEx as a filler, depend-to a high degree-on the amount of the filler. The composite can be processed up to 60% of the filler content. The Polymer Mixture Fluidity dropped significantly, in line with the amount of filler, while the mechanical properties, on the other hand, predominantly grew with the increasing amount of rHDPEx.
Faculty of Technology Tomas Bata University in Zlin Vavreckova 275 760 01 Zlin Czech Republic
SKODA AUTO a s tr Vaclava Klementa 869 293 01 Mlada Boleslav Mlada Boleslav 2 Czech Republic
Zobrazit více v PubMed
Nikolić M.A., Gauthier E., Colwell J.M., Halley P., Bottle S.E., Laycock B., Truss R. The challenges in lifetime prediction of oxodegradable polyolefin and biodegradable polymer films. Polym. Degrad. Stab. 2017;145:102–119. doi: 10.1016/j.polymdegradstab.2017.07.018. DOI
Laycock B., Nikolić M., Colwell J.M., Gauthier E., Halley P., Bottle S., George G. Lifetime prediction of biodegradable polymers. Prog. Polym. Sci. 2017;71:144–189. doi: 10.1016/j.progpolymsci.2017.02.004. DOI
Ignatyev I.A., Thielemans W., Vander Beke B. Recycling of Polymers: A Review. ChemSusChem. 2014;7:1579–1593. doi: 10.1002/cssc.201300898. PubMed DOI
Hubo S., Leite L., Martins C., Ragaert K. Evaluation of post-industrial and post-consumer polyolefin-based polymer waste streams for injection moulding; Proceedings of the 6th Polymers & Mould Innovations International Conference; Guimaraes, Portugal. 10–12 September 2014; pp. 201–206.
Ragaert K., Delva L., Geem K.V. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017;69:24–58. doi: 10.1016/j.wasman.2017.07.044. PubMed DOI
Oblak P., Gonzalez-Gutierrez J., Zupančič B., Aulova A., Emri I. Processability and mechanical properties of extensively recycled high density polyethylene. Polym. Degrad. Stab. 2015;114:133–145. doi: 10.1016/j.polymdegradstab.2015.01.012. DOI
Brandrup J. Recycling and Recovery of Plastics. Hanser Publishers; Munich, Germany: 1996.
Al-Salem S., Lettieri P., Baeyens J. Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Manag. 2009;29:2625–2643. doi: 10.1016/j.wasman.2009.06.004. PubMed DOI
Hopewell J., Dvorak R., Kosior E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009;364:2115–2126. doi: 10.1098/rstb.2008.0311. PubMed DOI PMC
Bajracharya R.M., Manalo A.C., Karunasena W., Lau K.T. Characterisation of recycled mixed plastic solid wastes: Coupon and full-scale investigation. Waste Manag. 2016;48:72–80. doi: 10.1016/j.wasman.2015.11.017. PubMed DOI
Díaz S., Ortega Z., McCourt M., Kearns M.P., Benítez A.N. Recycling of polymeric fraction of cable waste by rotational moulding. Waste Manag. 2018 doi: 10.1016/j.wasman.2018.03.020. PubMed DOI
Stenvall E., Tostar S., Boldizar A., Foreman M.R., Möller K. An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE) Waste Manag. 2013;33:915–922. doi: 10.1016/j.wasman.2012.12.022. PubMed DOI
Censori M., Marca F.L., Carvalho M.T. Separation of plastics: The importance of kinetics knowledge in the evaluation of froth flotation. Waste Manag. 2016;54:39–43. doi: 10.1016/j.wasman.2016.05.021. PubMed DOI
Arvanitoyannis I.S., Bosnea L.A. Recycling of polymeric materials used for food packaging: Current status and perspectives. Food Rev. Int. 2001;17:291–346. doi: 10.1081/FRI-100104703. DOI
Rem P., Maio F.D., Hu B., Houzeaux G., Baltes L., Tierean M. Magnetic fluid equipment for sorting secondary polyolefins from waste. Environ. Eng. Manag. J. 2013;12:951–958.
Baričević A., Rukavina M.J., Pezer M., Štirmer N. Influence of recycled tire polymer fibers on concrete properties. Cem. Concr. Compos. 2018;91:29–41. doi: 10.1016/j.cemconcomp.2018.04.009. DOI
Stenvall E., Boldizar A. Mechanical and Thermal Characterization of Melt-Filtered, Blended and Reprocessed Post-Consumer WEEE Thermoplastics. Recycling. 2016;1:89–100. doi: 10.3390/recycling1010089. DOI
Puig-Arnavat M., Bruno J.C., Coronas A. Review and analysis of biomass gasification models. Renew. Sustain. Energy Rev. 2010;14:2841–2851. doi: 10.1016/j.rser.2010.07.030. DOI
Angyal A., Miskolczi N., Bartha L. Petrochemical feedstock by thermal cracking of plastic waste. J. Anal. Appl. Pyrolysis. 2007;79:409–414. doi: 10.1016/j.jaap.2006.12.031. DOI
Kumar A., Jones D.D., Hanna M.A. Thermochemical Biomass Gasification: A Review of the Current Status of the Technology. Energies. 2009;2:556–581. doi: 10.3390/en20300556. DOI
Drobny J.G. 9-Safety and Hygiene. In: Drobny J.G., editor. Ionizing Radiation and Polymers. Plastics Design Library, William Andrew Publishing; New York, NY, USA: 2013. pp. 237–243.
Rouif S. Radiation cross-linked polymers: Recent developments and new applications. Nucl. Instrum. Methods Phys. Res. Sect. B. 2005;236:68–72. doi: 10.1016/j.nimb.2005.03.252. DOI
Gehring J. With radiation crosslinking of engineering plastics into the next millennium. Radiat. Phys. Chem. 2000;57:361–365. doi: 10.1016/S0969-806X(99)00405-3. DOI
Navratil J., Manas M., Mizera A., Bednarik M., Stanek M., Danek M. Recycling of irradiated high-density polyethylene. Radiat. Phys. Chem. 2015;106:68–72. doi: 10.1016/j.radphyschem.2014.06.025. DOI
Burillo G., Clough R.L., Czvikovszky T., Guven O., Moel A.L., Liu W., Singh A., Yang J., Zaharescu T. Polymer recycling: Potential application of radiation technology. Radiat. Phys. Chem. 2002;64:41–51. doi: 10.1016/S0969-806X(01)00443-1. DOI
Vasachar R., Bhajantri R.F., Dhola P.S., Sanjeev G. Impact of electron-beam irradiation on free-volume related microstructural properties of PVA: NaBr polymer composites. Nucl. Instrum. Methods Phys. Res. Sect. B. 2015;342:29–38.
Adem E., Avalos-Borja M., Carrillo D., Vazquez M., Sanchez E., Carreon M., Burillo G. Crosslinking of recycled polyethylene by gamma and electron beam irradiation. Radiat. Phys. Chem. 1998;52:171–176. doi: 10.1016/S0969-806X(98)00134-0. DOI
Navratil J., Manas M., Stanek M., Manas D., Bednarik M., Mizera A. Advanced Materials, Structures and Mechanical Engineering. Volume 1025. Trans Tech Publications; Stafa-Zurich, Switzerland: 2014. Influence of Recycled Irradiated HDPE on Mechanical Behavior of LDPE/Hdpex Blends; pp. 265–269.
Navratil J., Manas M., Stanek M., Manas D., Ovsik M., Bednarik M., Mizera A. Hardness and Micro-Indentation Hardness Comparison of Recycled Modified HDPE. Key Eng. Mater. 2014;606:217–220. doi: 10.4028/www.scientific.net/KEM.606.217. DOI
Tokuda S., Horikawa S., Negishi K., Uesugi K., Hirukawa H. Thermoplasticizing technology for the recycling of crosslinked polyethylene. Furukawa Rev. 2003;23:88–93.
Sam Janajreh I., Alshrah M. Remolding of Cross-Linked Polyethylene Cable Waste: Thermal and Mechanical Property Assessment. Int. J. Therm. Environ. Eng. 2013;5:191–198.
Qudaih R., Janajreh I., Vukusic S. Advances in Sustainable Manufacturing. Springer; Berlin/Heidelberg, Germany: 2011. Recycling of Cross-linked Polyethylene Cable Waste via Particulate Infusion; pp. 233–239.
International Organization for Standardization (ISO) Practice for Calibration of Routine Dosimetry Systems for Radiation Processing. International Organization for Standardization; Geneva, Switzerland: 2013. Standard.
ASTM International . Standard Test Method for Determining Gel Content in Crosslinked Ethylene Plastics Using Pressurized Liquid Extraction (Withdrawn 2015) ASTM International; West Conshohocken, PA, USA: 2009. Standard.
International Organization for Standardization (ISO) Plastics—Determination of Tensile Properties. International Organization for Standardization; Geneva, Switzerland: 2012. Standard.
Czech Office for Standards Metrology and Testing (UNMZ) CSN en ISO 1133-1-Plastics—Determination of the Melt Mass-Flow Rate (MFR) and Melt Volume-Flow Rate (MVR) of Thermoplastics—Part 1: Standard Method. Czech Office for Standards Metrology and Testing; Prague, Czech Republic: 2011. Standard.
Stanek M., Manas D., Manas M. Stavebnicova Testovaci Vstrikovaci Forma. Industrial Property Office; Prague, Czech Republic: 2012. Uzitny vzor 23338.
International Organization for Standardization (ISO) Plastics and Ebonite—Determination of Indentation Hardness by Means of A Durometer (Shore Hardness) International Organization for Standardization; Geneva, Switzerland: 2003. Standard.
International Organization for Standardization (ISO) Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters. International Organization for Standardization; Geneva, Switzerland: 2015. Standard.
International Organization for Standardization (ISO) Plastics–Determination of Charpy Impact Properties—Part 2: Instrumental Impact Test. International Organization for Standardization; Geneva, Switzerland: 1997. Standard.