The High Density Polyethylene Composite with Recycled Radiation Cross-Linked Filler of rHDPEx

. 2018 Dec 08 ; 10 (12) : . [epub] 20181208

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30961286

This article discusses the possibilities of using radiation cross-linked high density polyethylene (HDPEx) acting as a filler in the original high density polyethylene (HDPE) matrix. The newly created composite is one of the possible answers to questions relating to the processing of radiation cross-linked thermoplastics. Radiation cross-linked networking is-nowadays, a commonly used technology that can significantly modify the properties of many types of thermoplastics. This paper describes the influence of the concentration of filler, in the form of grit or powder obtained by the grinding/milling of products/industrial waste from radiation cross-linked high density polyethylene (rHDPEx) on the mechanical and processing properties and the composite structure. It was determined that, by varying the concentration of the filler, it is possible to influence the mechanical behaviour of the composite. The mechanical properties of the new composite-measured at room temperature, are generally comparable or better than the same properties of the original thermoplastic. This creates very good assumptions for the effective and economically acceptable, processing of high density polyethylene (rHDPEx) waste. Its processability however, is limited; it can be processed by injection moulding up to 60 wt %.

Zobrazit více v PubMed

Ignatyev I.A., Thielemans W., Vander Beke B. Recycling of Polymers: A Review. ChemSusChem. 2014;7:1579–1593. doi: 10.1002/cssc.201300898. PubMed DOI

Hubo S., Leite L., Martins C., Ragaert K. Evaluation of post-industrial and post-consumer polyolefin-based polymer waste streams for injection moulding; Proceedings of the 6th Polymers & Mould Innovations International Conference; University of Minho, Guimarães, Portugal. 10–12 September 2014; pp. 201–206.

Brandrup J. Recycling and Recovery of Plastics. Hanser Publishers; Munich, German: 1996.

Ragaert K., Delva L., Geem K.V. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017;69:24–58. doi: 10.1016/j.wasman.2017.07.044. PubMed DOI

Oblak P., Gonzalez-Gutierrez J., Zupančič B., Aulova A., Emri I. Processability and mechanical properties of extensively recycled high density polyethylene. Polym. Degrad. Stab. 2015;114:133–145. doi: 10.1016/j.polymdegradstab.2015.01.012. DOI

Al-Salem S., Lettieri P., Baeyens J. Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Manag. 2009;29:2625–2643. doi: 10.1016/j.wasman.2009.06.004. PubMed DOI

Hopewell J., Dvorak R., Kosior E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009;364:2115–2126. doi: 10.1098/rstb.2008.0311. PubMed DOI PMC

Bajracharya R.M., Manalo A.C., Karunasena W., Lau K.T. Characterisation of recycled mixed plastic solid wastes: Coupon and full-scale investigation. Waste Manag. 2016;48:72–80. doi: 10.1016/j.wasman.2015.11.017. PubMed DOI

Díaz S., Ortega Z., McCourt M., Kearns M.P., Benítez A.N. Recycling of polymeric fraction of cable waste by rotational moulding. Waste Manag. 2018;76:199–206. doi: 10.1016/j.wasman.2018.03.020. PubMed DOI

Stenvall E., Tostar S., Boldizar A., Foreman M.R., Möller K. An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE) Waste Manag. 2013;33:915–922. doi: 10.1016/j.wasman.2012.12.022. PubMed DOI

Censori M., Marca F.L., Carvalho M.T. Separation of plastics: The importance of kinetics knowledge in the evaluation of froth flotation. Waste Manag. 2016;54:39–43. doi: 10.1016/j.wasman.2016.05.021. PubMed DOI

Arvanitoyannis I.S., Bosnea L.A. Recycling of polymeric materials used for food packaging: Current status and perspectives. Food Rev. Int. 2001;17:291–346. doi: 10.1081/FRI-100104703. DOI

Rem P., Maio F.D., Hu B., Houzeaux G., Baltes L., Tierean M. Magnetic fluid equipment for sorting secondary polyolefins from waste. Environ. Eng. Manag. J. 2013;12:951–958.

Baričević A., Rukavina M.J., Pezer M., Štirmer N. Influence of recycled tire polymer fibers on concrete properties. Cement Concrete Compos. 2018;91:29–41. doi: 10.1016/j.cemconcomp.2018.04.009. DOI

Stenvall E., Boldizar A. Mechanical and Thermal Characterization of Melt-Filtered, Blended and Reprocessed Post-Consumer WEEE Thermoplastics. Recycling. 2016;1:89–100. doi: 10.3390/recycling1010089. DOI

Puig-Arnavat M., Bruno J.C., Coronas A. Review and analysis of biomass gasification models. Renew. Sustain. Energy Rev. 2010;14:2841–2851. doi: 10.1016/j.rser.2010.07.030. DOI

Angyal A., Miskolczi N., Bartha L. Petrochemical feedstock by thermal cracking of plastic waste. J. Anal. Appl. Pyrolysis. 2007;79:409–414. doi: 10.1016/j.jaap.2006.12.031. DOI

Kumar A., Jones D.D., Hanna M.A. Thermochemical Biomass Gasification: A Review of the Current Status of the Technology. Energies. 2009;2:556–581. doi: 10.3390/en20300556. DOI

Kögel G. Synthesegas aus Kunststoffabfällen. K Magazin. Jul 3, 2018. pp. 40–41.

Lubos P. Schluss mit der Recyclinglüge. K Magazin. Jun 26, 2018. pp. 10–14.

Emans T. Immer größere Kapazitäten für PE. K Magazin. Jun 28, 2018. p. 20.

Packaging recycling in US rises by 10% Film and Sheet Extrusion. Mar, 2018. p. 11.

Nikolić M.A., Gauthier E., Colwell J.M., Halley P., Bottle S.E., Laycock B., Truss R. The challenges in lifetime prediction of oxodegradable polyolefin and biodegradable polymer films. Polym. Degrad. Stab. 2017;145:102–119. doi: 10.1016/j.polymdegradstab.2017.07.018. DOI

Laycock B., Nikolić M., Colwell J.M., Gauthier E., Halley P., Bottle S., George G. Lifetime prediction of biodegradable polymers. Prog. Polym. Sci. 2017;71:144–189. doi: 10.1016/j.progpolymsci.2017.02.004. DOI

Drobny J.G. 9—Safety and Hygiene. In: Drobny J.G., editor. Ionizing Radiation and Polymers. Plastics Design Library, William Andrew Publishing; Norwich, NY, USA: 2013. pp. 237–243.

Rouif S. Radiation cross-linked polymers: Recent developments and new applications. Nuclear Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2005;236:68–72. doi: 10.1016/j.nimb.2005.03.252. DOI

Gehring J. With radiation crosslinking of engineering plastics into the next millennium. Radiat. Phys. Chem. 2000;57:361–365. doi: 10.1016/S0969-806X(99)00405-3. DOI

Navratil J., Manas M., Mizera A., Bednarik M., Stanek M., Danek M. Recycling of irradiated high-density polyethylene. Radiat. Phys. Chem. 2015;106:68–72. doi: 10.1016/j.radphyschem.2014.06.025. DOI

Burillo G., Clough R.L., Czvikovszky T., Guven O., Moel A.L., Liu W., Singh A., Yang J., Zaharescu T. Polymer recycling: Potential application of radiation technology. Radiat. Phys. Chem. 2002;64:41–51. doi: 10.1016/S0969-806X(01)00443-1. DOI

Adem E., Avalos-Borja M., Carrillo D., Vazquez M., Sanchez E., Carreon M., Burillo G. Crosslinking of recycled polyethylene by gamma and electron beam irradiation. Radiat. Phys. Chem. 1998;52:171–176. doi: 10.1016/S0969-806X(98)00134-0. DOI

Navratil J., Manas M., Stanek M., Manas D., Bednarik M., Mizera A. Influence of Recycled Irradiated HDPE on Mechanical Behavior of LDPE/Hdpex Blends. Adv. Mater. Res. 2014;1025:265–269. doi: 10.4028/www.scientific.net/AMR.1025-1026.265. DOI

Tokuda S., Horikawa S., Negishi K., Uesugi K., Hirukawa H. Thermoplasticizing technology for the recycling of crosslinked polyethylene. Furukawa Rev. 2003;23:88–93.

Sam Janajreh I., Alshrah M. Remolding of Cross-Linked Polyethylene Cable Waste: Thermal and Mechanical Property Assessment. Int. J. Therm. Environ. Eng. 2013;5:191–198.

Qudaih R., Janajreh I., Vukusic S. Advances in Sustainable Manufacturing. Springer; Berlin/Heidelberg, Germany: 2011. Recycling of Cross-linked Polyethylene Cable Waste via Particulate Infusion; pp. 233–239.

Manas D., Manas M., Mizera A., Navratil J., Ovsik M., Tomanova K., Sehnalek S. Use of Irradiated Polymers after Their Lifetime Period. Polymers. 2018;10:641. doi: 10.3390/polym10060641. PubMed DOI PMC

Practice for Calibration of Routine Dosimetry Systems for Radiation Processing. International Organization for Standardization; Geneva, Switzerland: 2013.

Standard Test Method for Determining Gel Content in Crosslinked Ethylene Plastics Using Pressurized Liquid Extraction (Withdrawn 2015) ASTM International; West Conshohocken, PA, USA: 2009.

Plastics—Determination of Tensile Properties. International Organization for Standardization; Geneva, Switzerland: 2012.

Stanek M., Manas D., Manas M. Stavebnicova Testovaci Vstrikovaci Forma. Urad Prumysloveho Vlastnictvi; Prague, Czech Republic: 2012. Uzitny vzor 23338.

Plastics and Ebonite—Determination of Indentation Hardness by Means of a Durometer (Shore Hardness) International Organization for Standardization; Geneva, Switzerland: 2003.

Plastics—Thermoplastic Materials—Determination of Vicat Softening Temperature. International Organization for Standardization; Geneva, Switzerland: 2013.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Dynamic Behavior of Thermally Affected Injection-Molded High-Density Polyethylene Parts Modified by Accelerated Electrons

. 2022 Nov 16 ; 14 (22) : . [epub] 20221116

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...