Germline transgenesis in rabbits by pronuclear microinjection of Sleeping Beauty transposons

. 2014 Apr ; 9 (4) : 794-809. [epub] 20140313

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24625779

The laboratory rabbit (Oryctolagus cuniculus) is widely used as a model for a variety of inherited and acquired human diseases. In addition, the rabbit is the smallest livestock animal that is used to transgenically produce pharmaceutical proteins in its milk. Here we describe a protocol for high-efficiency germline transgenesis and sustained transgene expression in rabbits by using the Sleeping Beauty (SB) transposon system. The protocol is based on co-injection into the pronuclei of fertilized oocytes of synthetic mRNA encoding the SB100X hyperactive transposase together with plasmid DNA carrying a transgene construct flanked by binding sites for the transposase. The translation of the transposase mRNA is followed by enzyme-mediated excision of the transgene cassette from the plasmids and its permanent genomic insertion to produce stable transgenic animals. Generation of a germline-transgenic founder animal by using this protocol takes ∼2 months. Transposon-mediated transgenesis compares favorably in terms of both efficiency and reliable transgene expression with classic pronuclear microinjection, and it offers comparable efficacies (numbers of transgenic founders obtained per injected embryo) to lentiviral approaches, without limitations on vector design, issues of transgene silencing, and the toxicity and biosafety concerns of working with viral vectors.

Zobrazit více v PubMed

Nature. 1982 Aug 12;298(5875):623-8 PubMed

Hum Gene Ther. 2005 Nov;16(11):1241-6 PubMed

Nat Protoc. 2011 Sep 08;6(10):1521-35 PubMed

Nat Biotechnol. 2002 Apr;20(4):366-9 PubMed

Cold Spring Harb Perspect Med. 2012 Nov 01;2(11): PubMed

Mol Ther. 2011 Aug;19(8):1499-510 PubMed

Reproduction. 2007 Jan;133(1):219-30 PubMed

Mol Ther. 2004 Feb;9(2):292-304 PubMed

Physiol Genomics. 2007 Oct 22;31(2):159-73 PubMed

Cloning Stem Cells. 2009 Mar;11(1):203-208 PubMed

Invest Ophthalmol Vis Sci. 2012 Jun 28;53(7):4254-61 PubMed

Atherosclerosis. 1980 Jun;36(2):261-8 PubMed

J Clin Invest. 2008 Jun;118(6):2246-59 PubMed

Transgenic Res. 2010 Oct;19(5):799-808 PubMed

FASEB J. 2013 Mar;27(3):930-41 PubMed

J RNAi Gene Silencing. 2005 Sep 02;1(2):97-104 PubMed

Nucleic Acids Res. 1991 Aug 11;19(15):4293 PubMed

Nat Protoc. 2007;2(11):2910-7 PubMed

J Atheroscler Thromb. 2004;11(4):184-9 PubMed

Mol Reprod Dev. 1996 May;44(1):56-62 PubMed

Nat Protoc. 2014 Apr;9(4):810-27 PubMed

Mol Cells. 2004 Apr 30;17(2):373-6 PubMed

Mob DNA. 2010 Dec 07;1(1):25 PubMed

Nature. 1985 Jun 20-26;315(6021):680-3 PubMed

PLoS One. 2011;6(8):e23573 PubMed

Cell. 1997 Nov 14;91(4):501-10 PubMed

Elife. 2013 Jun 18;2:e00668 PubMed

Biol Reprod. 2011 Feb;84(2):229-37 PubMed

Nat Protoc. 2014 Apr;9(4):773-93 PubMed

J Reprod Fertil. 1993 Sep;99(1):53-6 PubMed

Nat Methods. 2009 Jun;6(6):415-22 PubMed

Vision Res. 2002 Feb;42(4):393-9 PubMed

Nucleic Acids Res. 2012 Aug;40(14):6693-712 PubMed

Mol Reprod Dev. 1996 Feb;43(2):167-70 PubMed

Biol Reprod. 1999 Apr;60(4):821-7 PubMed

PLoS One. 2011;6(6):e21045 PubMed

Mol Ther. 2010 Jun;18(6):1200-9 PubMed

Methods Mol Biol. 2012;859:229-40 PubMed

Transgenic Res. 2011 Jun;20(3):441-2 PubMed

Nat Genet. 2009 Jun;41(6):753-61 PubMed

Nature. 2009 Apr 30;458(7242):1201-4 PubMed

Invest Ophthalmol Vis Sci. 2009 Mar;50(3):1371-7 PubMed

Mol Ther. 2012 Oct;20(10):1852-62 PubMed

Nucleic Acids Res. 2012 Oct;40(19):e150 PubMed

PLoS One. 2012;7(1):e28869 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace