Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30190505
PubMed Central
PMC6127282
DOI
10.1038/s41467-018-06036-0
PII: 10.1038/s41467-018-06036-0
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Though tree-ring chronologies are annually resolved, their dating has never been independently validated at the global scale. Moreover, it is unknown if atmospheric radiocarbon enrichment events of cosmogenic origin leave spatiotemporally consistent fingerprints. Here we measure the 14C content in 484 individual tree rings formed in the periods 770-780 and 990-1000 CE. Distinct 14C excursions starting in the boreal summer of 774 and the boreal spring of 993 ensure the precise dating of 44 tree-ring records from five continents. We also identify a meridional decline of 11-year mean atmospheric radiocarbon concentrations across both hemispheres. Corroborated by historical eye-witness accounts of red auroras, our results suggest a global exposure to strong solar proton radiation. To improve understanding of the return frequency and intensity of past cosmic events, which is particularly important for assessing the potential threat of space weather on our society, further annually resolved 14C measurements are needed.
AgroParisTech INRA Université de Lorraine 54000 Nancy France
AMS Laboratory University of Arizona Tucson AZ 85721 USA
Archaeological Service Kanton Thurgau 8510 Frauenfeld Switzerland
Bavarian State Office for Monument Protection 80539 München Germany
Bolin Centre for Climate Research Stockholm University SE 10691 Stockholm Sweden
Center for Climate and Resilience Research Blanco Encalada 2002 8370449 Santiago Chile
CNR IVALSA Trees and Timber Institute 38010 San Michele all'Adige TN Italy
Département de biologie chimie et géographie University of Québec in Rimouski QC G5L 3A1 Canada
Department of Earth and Environmental Systems Indiana State University Terre Haute IN 47809 USA
Department of Earth Sciences University of Gothenburg 405 30 Gothenburg Sweden
Department of Environmental Science William Paterson University Wayne NJ 07470 USA
Department of Geography Johannes Gutenberg University 55099 Mainz Germany
Department of Geography Masaryk University 611 37 Brno Czech Republic
Department of Geography Swansea University Swansea SA2 8PP Wales UK
Department of Geography University of Cambridge Cambridge CB2 3EN UK
Department of Geography University of Guelph ON N1G 2W1 Canada
Department of Geography University of Tennessee Knoxville TN 37996 0925 USA
Department of Geography University of Western Ontario London ON N6A 3K7 Canada
Department of Geology and Geography West Virginia University WV 26505 6300 USA
Department of Geosciences University of Arizona Tucson AZ 85721 USA
Department of History Stockholm University SE 10691 Stockholm Sweden
Department of Humanities Siberian Federal University 660041 Krasnoyarsk Russia
Department of of Earth Sciences The College of Wooster OH 44691 USA
Department of Physical Geography Stockholm University SE 106 91 Stockholm Sweden
Department of Wood Science Mendel University in Brno 61300 Brno Czech Republic
Department Territorio e Sistemi Agro Forestali University of Padova 35020 Legnaro Italy
German Archaeological Institute 14195 Berlin Germany
Global Change Research Institute CAS 603 00 Brno Czech Republic
Harvard Forest Harvard University Petersham MA 01366 USA
Icelandic Forest Research Mógilsá 116 Reykjavik Iceland
Institute for Environmental Sciences University of Geneva 1205 Geneva Switzerland
Institute for Space Earth Environmental Research Nagoya University Nagoya 464 8601 Japan
Institute of Geography Friedrich Alexander University Erlangen Nürnberg 91058 Erlangen Germany
Institute of Geography University of Innsbruck 6020 Innsbruck Austria
Laboratory for Ion Beam Physics ETH Zürich CH 8093 Zurich Switzerland
Laboratory of Environmental Chemistry Paul Scherrer Institute 5232 Villigen Switzerland
Laboratory of Tree Ring Research University of Arizona Tucson AZ 85721 USA
Navarino Environmental Observatory GR 24001 Messinia Greece
School of Environment University of Auckland 1010 Auckland New Zealand
School of Geography and Geosciences University of St Andrews St Andrews KY16 9AJ Scotland UK
School of Natural and Built Environment Queen's University Belfast BT7 1NN Northern Ireland UK
School of Natural Science Hampshire College Amherst MA 01002 USA
Sukachev Institute of Forest SB RAS 660036 Krasnoyarsk Russia
Swedish Polar Research Secretariat SE 104 05 Stockholm Sweden
Swiss Federal Institute of Aquatic Science and Technology Eawag CH 8600 Dübendorf Switzerland
Swiss Federal Research Institute WSL CH 8903 Birmensdorf Switzerland
Zobrazit více v PubMed
Büntgen U, et al. 2500 years of European climate variability and human susceptibility. Science. 2011;331:578–582. doi: 10.1126/science.1197175. PubMed DOI
Esper J, et al. Ranking of tree-ring based temperature reconstructions of the past millennium. Quat. Sci. Rev. 2016;145:134–151. doi: 10.1016/j.quascirev.2016.05.009. DOI
Büntgen U, et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat. Geosci. 2016;9:231–236. doi: 10.1038/ngeo2652. DOI
Miyake F, Nagaya N, Masuda K, Nakamura T. A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature. 2012;486:240–242. doi: 10.1038/nature11123. PubMed DOI
Miyake F, Masuda K, Nakamura T. Another rapid event in the carbon-14 content of tree rings. Nat. Commun. 2013;4:1748. doi: 10.1038/ncomms2783. PubMed DOI
Braziunas TF, Fung IY, Stuiver M. The preindustrial atmospheric 14CO2 latitudinal gradient as related to exchanges among atmospheric, oceanic, and terrestrial reservoirs. Glob. Biogeochem. Cycles. 1995;9:565–584. doi: 10.1029/95GB01725. DOI
Mekhaldi F, et al. Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4. Nat. Commun. 2015;6:8611. doi: 10.1038/ncomms9611. PubMed DOI PMC
Sukhodolov T, et al. Atmospheric impacts of the strongest known solar particle storm of 775 AD. Sci. Rep. 2017;7:45257. doi: 10.1038/srep45257. PubMed DOI PMC
Büntgen U, et al. Extraterrestrial confirmation of tree-ring dating. Nat. Clim. Change. 2014;4:404–405. doi: 10.1038/nclimate2240. DOI
Jull AJT, et al. Excursions in the 14C record at A.D. 774–775 in tree rings from Russia and America. Geophys. Res. Lett. 2014;41:3004–3010. doi: 10.1002/2014GL059874. DOI
Wacker L, et al. Radiocarbon dating to a single year by means of rapid atmospheric 14C changes. Radiocarbon. 2014;56:573–579. doi: 10.2458/56.17634. DOI
Güttler D, et al. Rapid increase in cosmogenic 14C in AD 775 measured in New Zealand kauri trees indicates short-lived increase in 14C production spanning both hemispheres. Earth. Planet. Sci. Lett. 2015;411:290–297. doi: 10.1016/j.epsl.2014.11.048. DOI
Fogtmann-Schulz A, et al. Cosmic ray event in 994 C.E. recorded in radiocarbon from Danish oak. Geophys. Res. Lett. 2017;44:8621–8628. doi: 10.1002/2017GL074208. DOI
Park J, Southon J, Fahrni S, Creasman PP, Mewaldt R. Relationship between solar activity and Δ14C peaks in AD 775, AD 993, and 660 BC. Radiocarbon. 2017;59:1147–11564. doi: 10.1017/RDC.2017.59. DOI
Wang FY, et al. A rapid cosmic-ray increase in BC 3372–3371 from ancient buried tree rings in China. Nat. Commun. 2017;8:1487. doi: 10.1038/s41467-017-01698-8. PubMed DOI PMC
Dee MW, Pope BJS. Anchoring historical sequences using a new source of astro-chronological tie-points. Proc. R. Soc. A. 2017;472:20160263. doi: 10.1098/rspa.2016.0263. PubMed DOI PMC
Hua Q, Barbetti M, Rakowski AZ. Atmospheric radiocarbon for the period 1950-2010. Radiocarbon. 2013;55:2059–2072. doi: 10.2458/azu_js_rc.v55i2.16177. DOI
Wacker L, et al. MICADAS: routine and high-precision radiocarbon dating. Radiocarbon. 2010;52:52–62. doi: 10.1017/S0033822200045288. DOI
Rodgers K, et al. Interhemispheric gradient of atmospheric radiocarbon reveals natural variability of Southern Ocean winds. Clim. Past. 2011;7:1123–1138. doi: 10.5194/cp-7-1123-2011. DOI
Stoffel M, et al. Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1,500 years. Nat. Geosci. 2015;8:784–788. doi: 10.1038/ngeo2526. DOI
Büntgen U, et al. Multi-proxy dating of Iceland’s major pre-settlement Katla eruption to 822–823 CE. Geology. 2017;45:783–786. doi: 10.1130/G39269.1. DOI
Oppenheimer C, et al. Multi-proxy dating the ‘Millennium Eruption’ of Changbaishan to late 946 CE. Quat. Sci. Rev. 2017;158:164–171. doi: 10.1016/j.quascirev.2016.12.024. DOI
Miyake F, et al. Cosmic ray event of AD 774–775 shown in quasi‐annual 10Be data from the Antarctic Dome Fuji ice core. Geophys. Res. Lett. 2015;42:84–89. doi: 10.1002/2014GL062218. DOI
Sigl M, et al. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature. 2015;523:543–549. doi: 10.1038/nature14565. PubMed DOI
Casal UA. The Saintly Kôbô Daishi in Popular Lore (A.D. 774–835) Folk. Stud. 1959;95:95–144. doi: 10.2307/1177430. DOI
Ushakov, I. A., Mortensen, A. & Ushakov, A. S. Histories of Scientific Insight 396 (Lulu Press, Morrisville, 2007).
Bronowski, J. The Ascent of Man 144 (Random House, New York, 1973).
Britton, C. E. A Meteorological Chronology to AD 1450 (Meteorological Office, London, 1937).
Short, T. A. General Chronological History of the Air, Weather, Seasons, Meteors, & c. in Sundry Places and Different Times p. 534 (T. Longman and A. Millar, London, 1749).
Usoskin IG, et al. The AD 775 cosmic event revisited: the Sun is to blame. Astron. Astrophys. 2013;552:L3. doi: 10.1051/0004-6361/201321080. DOI
Hayakawa H, et al. Historical auroras in the 990 s: evidence of great magnetic storms. Sol. Phys. 2017;292:12. doi: 10.1007/s11207-016-1039-2. DOI
Reinig F, et al. New tree-ring evidence for the Late Glacial period from the northern pre-Alps in eastern Switzerland. Quat. Sci. Rev. 2018;186:215–224. doi: 10.1016/j.quascirev.2018.02.019. DOI
Schrijver CJ, Beer J. Space weather from explosions on the Sun: How bad could it be? EOS. 2014;95:201–202. doi: 10.1002/2014EO240001. DOI
Wacker L, Nemec M, Bourquin J. A revolutionary graphitisation system: fully automated, compact and simple. Nucl. Instr. Meth. Phys. Res. B. 2010;268:931–934. doi: 10.1016/j.nimb.2009.10.067. DOI
Nemec M, Wacker L, Gäggeler H. Optimization of the graphitization process at AGE-1. Radiocarbon. 2010;52:1380–1383. doi: 10.1017/S0033822200046464. DOI
Nemec M, Wacker L, Hajdas I, Gäggeler H. Alternative methods for cellulose preparation for AMS measurement. Radiocarbon. 2010;52:1358–1370. doi: 10.1017/S0033822200046440. DOI
Adolphi F, Güttler D, Wacker L, Skog G, Muscheler R. Intercomparison of C-14 Dating of wood samples at Lund University and ETH-Zurich AMS facilities: extraction, graphitization, and measurement. Radiocarbon. 2013;55:391–400. doi: 10.1017/S0033822200057519. DOI
Synal HA, Stocker M, Suter M. MICADAS: a new compact radiocarbon AMS system. Nucl. Instr. Meth. Phys. Res. B. 2007;259:7–13. doi: 10.1016/j.nimb.2007.01.138. DOI
Appenzeller C, Holton JR, Rosenlof KH. Seasonal variation of mass trans-port across the Tropopause. J. Geophys. Res. A. 1996;101:15071–15078. doi: 10.1029/96JD00821. DOI
Levin I, Hesshaimer V. Radiocarbon – a unique tracer of global carbon cycle dynamics. Radiocarbon. 2000;42:69–80. doi: 10.1017/S0033822200053066. DOI
Kozlowski TT. Carbohydrate sources and sinks in woody plants. Bot. Rev. 1992;58:107–222. doi: 10.1007/BF02858600. DOI
Li MH, et al. Responses of leaf nitrogen and mobile carbohydrates in different Quercus species/provenances to moderate climate changes. Plant Biol. 2013;15:177–184. doi: 10.1111/j.1438-8677.2012.00579.x. PubMed DOI
Epron D, et al. Pulse-labelling trees to study carbon allocation dynamics: a review of methods, current knowledge and future prospects. Tree Physiol. 2012;32:776–798. doi: 10.1093/treephys/tps057. PubMed DOI
De Micco V, et al. Intra-annual density fluctuations in tree rings: how, when, where and why? IAWA. 2016;37:232–259. doi: 10.1163/22941932-20160132. DOI
Fritts, H. C. Tree Rings and Climate p. 567 (Academic Press, London, 1976).
Schulman, E. Dendroclimatic changes in Semiarid America p. 142 (University of Arizona Press, Tucson, 1956).
Tree-ring stable isotopes from the European Alps reveal long-term summer drying over the Holocene
The influence of decision-making in tree ring-based climate reconstructions
The importance of "year zero" in interdisciplinary studies of climate and history
Dendrochronological evidence for long-distance timber trading in the Roman Empire