Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE

. 2018 Sep 06 ; 9 (1) : 3605. [epub] 20180906

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30190505
Odkazy

PubMed 30190505
PubMed Central PMC6127282
DOI 10.1038/s41467-018-06036-0
PII: 10.1038/s41467-018-06036-0
Knihovny.cz E-zdroje

Though tree-ring chronologies are annually resolved, their dating has never been independently validated at the global scale. Moreover, it is unknown if atmospheric radiocarbon enrichment events of cosmogenic origin leave spatiotemporally consistent fingerprints. Here we measure the 14C content in 484 individual tree rings formed in the periods 770-780 and 990-1000 CE. Distinct 14C excursions starting in the boreal summer of 774 and the boreal spring of 993 ensure the precise dating of 44 tree-ring records from five continents. We also identify a meridional decline of 11-year mean atmospheric radiocarbon concentrations across both hemispheres. Corroborated by historical eye-witness accounts of red auroras, our results suggest a global exposure to strong solar proton radiation. To improve understanding of the return frequency and intensity of past cosmic events, which is particularly important for assessing the potential threat of space weather on our society, further annually resolved 14C measurements are needed.

AgroParisTech INRA Université de Lorraine 54000 Nancy France

AMS Laboratory University of Arizona Tucson AZ 85721 USA

Archaeological Service Kanton Thurgau 8510 Frauenfeld Switzerland

Bavarian State Office for Monument Protection 80539 München Germany

Bolin Centre for Climate Research Stockholm University SE 10691 Stockholm Sweden

Center for Climate and Resilience Research Blanco Encalada 2002 8370449 Santiago Chile

Chair of Forest Growth and Dendroecology Institute of Forest Sciences University of Freiburg Freiburg Germany

CNR IVALSA Trees and Timber Institute 38010 San Michele all'Adige TN Italy

Competence Center for Underwater Archaeology and Dendrochronology Office for Urbanism City of Zurich 8008 Zürich Switzerland

Département de biologie chimie et géographie University of Québec in Rimouski QC G5L 3A1 Canada

Department of Earth and Environmental Systems Indiana State University Terre Haute IN 47809 USA

Department of Earth Sciences University of Gothenburg 405 30 Gothenburg Sweden

Department of Environmental Science William Paterson University Wayne NJ 07470 USA

Department of Geography Johannes Gutenberg University 55099 Mainz Germany

Department of Geography Masaryk University 611 37 Brno Czech Republic

Department of Geography Swansea University Swansea SA2 8PP Wales UK

Department of Geography University of Cambridge Cambridge CB2 3EN UK

Department of Geography University of Guelph ON N1G 2W1 Canada

Department of Geography University of Tennessee Knoxville TN 37996 0925 USA

Department of Geography University of Western Ontario London ON N6A 3K7 Canada

Department of Geology and Geography West Virginia University WV 26505 6300 USA

Department of Geosciences University of Arizona Tucson AZ 85721 USA

Department of History Stockholm University SE 10691 Stockholm Sweden

Department of Humanities Siberian Federal University 660041 Krasnoyarsk Russia

Department of of Earth Sciences The College of Wooster OH 44691 USA

Department of Physical Geography Stockholm University SE 106 91 Stockholm Sweden

Department of Wood Science Mendel University in Brno 61300 Brno Czech Republic

Department Territorio e Sistemi Agro Forestali University of Padova 35020 Legnaro Italy

German Archaeological Institute 14195 Berlin Germany

Global Change Research Institute CAS 603 00 Brno Czech Republic

Harvard Forest Harvard University Petersham MA 01366 USA

Icelandic Forest Research Mógilsá 116 Reykjavik Iceland

Institute for Environmental Sciences University of Geneva 1205 Geneva Switzerland

Institute for Space Earth Environmental Research Nagoya University Nagoya 464 8601 Japan

Institute of Geography Friedrich Alexander University Erlangen Nürnberg 91058 Erlangen Germany

Institute of Geography University of Innsbruck 6020 Innsbruck Austria

Institute of Plant and Animal Ecology Ural Branch of the Russian Academy of Sciences Ekaterinburg 620144 Russia

Instituto Argentino de Nivología Glaciología y Ciencias Ambientales IANIGLA CONICET Mendoza CP 330 5500 Argentina

Isotope Climatology and Environmental Research Centre Institute of Nuclear Research H 4001 Debrecen Hungary

Key Laboratory of Desert and Desertification Northwest Institute of Eco Environment and Resources Chinese Academy of Sciences 730000 Lanzhou China

Laboratorio de Dendrocronología y Cambio Global Universidad Austral de Chile Casilla 567 Valdivia Chile

Laboratory for Ion Beam Physics ETH Zürich CH 8093 Zurich Switzerland

Laboratory of Environmental Chemistry Paul Scherrer Institute 5232 Villigen Switzerland

Laboratory of Tree Ring Research University of Arizona Tucson AZ 85721 USA

Navarino Environmental Observatory GR 24001 Messinia Greece

Palaeontology Geobiology and Earth Archives Research Centre and ARC Centre of Excellence for Australian Biodiversity and Heritage School of Biological Earth and Environmental Sciences The University of New South Wales Sydney NSW 2052 Australia

Rubenstein School of Environment and Natural Resources University of Vermont Burlington Vermont 05405 USA

School of Environment University of Auckland 1010 Auckland New Zealand

School of Geography and Geosciences University of St Andrews St Andrews KY16 9AJ Scotland UK

School of Natural and Built Environment Queen's University Belfast BT7 1NN Northern Ireland UK

School of Natural Science Hampshire College Amherst MA 01002 USA

Sukachev Institute of Forest SB RAS 660036 Krasnoyarsk Russia

Swedish Polar Research Secretariat SE 104 05 Stockholm Sweden

Swiss Federal Institute of Aquatic Science and Technology Eawag CH 8600 Dübendorf Switzerland

Swiss Federal Research Institute WSL CH 8903 Birmensdorf Switzerland

Tree Ring Laboratory Lamont Doherty Earth Observatory of Columbia University Palisades NY 10964 8000 USA

Erratum v

PubMed

Zobrazit více v PubMed

Büntgen U, et al. 2500 years of European climate variability and human susceptibility. Science. 2011;331:578–582. doi: 10.1126/science.1197175. PubMed DOI

Esper J, et al. Ranking of tree-ring based temperature reconstructions of the past millennium. Quat. Sci. Rev. 2016;145:134–151. doi: 10.1016/j.quascirev.2016.05.009. DOI

Büntgen U, et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat. Geosci. 2016;9:231–236. doi: 10.1038/ngeo2652. DOI

Miyake F, Nagaya N, Masuda K, Nakamura T. A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature. 2012;486:240–242. doi: 10.1038/nature11123. PubMed DOI

Miyake F, Masuda K, Nakamura T. Another rapid event in the carbon-14 content of tree rings. Nat. Commun. 2013;4:1748. doi: 10.1038/ncomms2783. PubMed DOI

Braziunas TF, Fung IY, Stuiver M. The preindustrial atmospheric 14CO2 latitudinal gradient as related to exchanges among atmospheric, oceanic, and terrestrial reservoirs. Glob. Biogeochem. Cycles. 1995;9:565–584. doi: 10.1029/95GB01725. DOI

Mekhaldi F, et al. Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4. Nat. Commun. 2015;6:8611. doi: 10.1038/ncomms9611. PubMed DOI PMC

Sukhodolov T, et al. Atmospheric impacts of the strongest known solar particle storm of 775 AD. Sci. Rep. 2017;7:45257. doi: 10.1038/srep45257. PubMed DOI PMC

Büntgen U, et al. Extraterrestrial confirmation of tree-ring dating. Nat. Clim. Change. 2014;4:404–405. doi: 10.1038/nclimate2240. DOI

Jull AJT, et al. Excursions in the 14C record at A.D. 774–775 in tree rings from Russia and America. Geophys. Res. Lett. 2014;41:3004–3010. doi: 10.1002/2014GL059874. DOI

Wacker L, et al. Radiocarbon dating to a single year by means of rapid atmospheric 14C changes. Radiocarbon. 2014;56:573–579. doi: 10.2458/56.17634. DOI

Güttler D, et al. Rapid increase in cosmogenic 14C in AD 775 measured in New Zealand kauri trees indicates short-lived increase in 14C production spanning both hemispheres. Earth. Planet. Sci. Lett. 2015;411:290–297. doi: 10.1016/j.epsl.2014.11.048. DOI

Fogtmann-Schulz A, et al. Cosmic ray event in 994 C.E. recorded in radiocarbon from Danish oak. Geophys. Res. Lett. 2017;44:8621–8628. doi: 10.1002/2017GL074208. DOI

Park J, Southon J, Fahrni S, Creasman PP, Mewaldt R. Relationship between solar activity and Δ14C peaks in AD 775, AD 993, and 660 BC. Radiocarbon. 2017;59:1147–11564. doi: 10.1017/RDC.2017.59. DOI

Wang FY, et al. A rapid cosmic-ray increase in BC 3372–3371 from ancient buried tree rings in China. Nat. Commun. 2017;8:1487. doi: 10.1038/s41467-017-01698-8. PubMed DOI PMC

Dee MW, Pope BJS. Anchoring historical sequences using a new source of astro-chronological tie-points. Proc. R. Soc. A. 2017;472:20160263. doi: 10.1098/rspa.2016.0263. PubMed DOI PMC

Hua Q, Barbetti M, Rakowski AZ. Atmospheric radiocarbon for the period 1950-2010. Radiocarbon. 2013;55:2059–2072. doi: 10.2458/azu_js_rc.v55i2.16177. DOI

Wacker L, et al. MICADAS: routine and high-precision radiocarbon dating. Radiocarbon. 2010;52:52–62. doi: 10.1017/S0033822200045288. DOI

Rodgers K, et al. Interhemispheric gradient of atmospheric radiocarbon reveals natural variability of Southern Ocean winds. Clim. Past. 2011;7:1123–1138. doi: 10.5194/cp-7-1123-2011. DOI

Stoffel M, et al. Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1,500 years. Nat. Geosci. 2015;8:784–788. doi: 10.1038/ngeo2526. DOI

Büntgen U, et al. Multi-proxy dating of Iceland’s major pre-settlement Katla eruption to 822–823 CE. Geology. 2017;45:783–786. doi: 10.1130/G39269.1. DOI

Oppenheimer C, et al. Multi-proxy dating the ‘Millennium Eruption’ of Changbaishan to late 946 CE. Quat. Sci. Rev. 2017;158:164–171. doi: 10.1016/j.quascirev.2016.12.024. DOI

Miyake F, et al. Cosmic ray event of AD 774–775 shown in quasi‐annual 10Be data from the Antarctic Dome Fuji ice core. Geophys. Res. Lett. 2015;42:84–89. doi: 10.1002/2014GL062218. DOI

Sigl M, et al. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature. 2015;523:543–549. doi: 10.1038/nature14565. PubMed DOI

Casal UA. The Saintly Kôbô Daishi in Popular Lore (A.D. 774–835) Folk. Stud. 1959;95:95–144. doi: 10.2307/1177430. DOI

Ushakov, I. A., Mortensen, A. & Ushakov, A. S. Histories of Scientific Insight 396 (Lulu Press, Morrisville, 2007).

Bronowski, J. The Ascent of Man 144 (Random House, New York, 1973).

Britton, C. E. A Meteorological Chronology to AD 1450 (Meteorological Office, London, 1937).

Short, T. A. General Chronological History of the Air, Weather, Seasons, Meteors, & c. in Sundry Places and Different Times p. 534 (T. Longman and A. Millar, London, 1749).

Usoskin IG, et al. The AD 775 cosmic event revisited: the Sun is to blame. Astron. Astrophys. 2013;552:L3. doi: 10.1051/0004-6361/201321080. DOI

Hayakawa H, et al. Historical auroras in the 990 s: evidence of great magnetic storms. Sol. Phys. 2017;292:12. doi: 10.1007/s11207-016-1039-2. DOI

Reinig F, et al. New tree-ring evidence for the Late Glacial period from the northern pre-Alps in eastern Switzerland. Quat. Sci. Rev. 2018;186:215–224. doi: 10.1016/j.quascirev.2018.02.019. DOI

Schrijver CJ, Beer J. Space weather from explosions on the Sun: How bad could it be? EOS. 2014;95:201–202. doi: 10.1002/2014EO240001. DOI

Wacker L, Nemec M, Bourquin J. A revolutionary graphitisation system: fully automated, compact and simple. Nucl. Instr. Meth. Phys. Res. B. 2010;268:931–934. doi: 10.1016/j.nimb.2009.10.067. DOI

Nemec M, Wacker L, Gäggeler H. Optimization of the graphitization process at AGE-1. Radiocarbon. 2010;52:1380–1383. doi: 10.1017/S0033822200046464. DOI

Nemec M, Wacker L, Hajdas I, Gäggeler H. Alternative methods for cellulose preparation for AMS measurement. Radiocarbon. 2010;52:1358–1370. doi: 10.1017/S0033822200046440. DOI

Adolphi F, Güttler D, Wacker L, Skog G, Muscheler R. Intercomparison of C-14 Dating of wood samples at Lund University and ETH-Zurich AMS facilities: extraction, graphitization, and measurement. Radiocarbon. 2013;55:391–400. doi: 10.1017/S0033822200057519. DOI

Synal HA, Stocker M, Suter M. MICADAS: a new compact radiocarbon AMS system. Nucl. Instr. Meth. Phys. Res. B. 2007;259:7–13. doi: 10.1016/j.nimb.2007.01.138. DOI

Appenzeller C, Holton JR, Rosenlof KH. Seasonal variation of mass trans-port across the Tropopause. J. Geophys. Res. A. 1996;101:15071–15078. doi: 10.1029/96JD00821. DOI

Levin I, Hesshaimer V. Radiocarbon – a unique tracer of global carbon cycle dynamics. Radiocarbon. 2000;42:69–80. doi: 10.1017/S0033822200053066. DOI

Kozlowski TT. Carbohydrate sources and sinks in woody plants. Bot. Rev. 1992;58:107–222. doi: 10.1007/BF02858600. DOI

Li MH, et al. Responses of leaf nitrogen and mobile carbohydrates in different Quercus species/provenances to moderate climate changes. Plant Biol. 2013;15:177–184. doi: 10.1111/j.1438-8677.2012.00579.x. PubMed DOI

Epron D, et al. Pulse-labelling trees to study carbon allocation dynamics: a review of methods, current knowledge and future prospects. Tree Physiol. 2012;32:776–798. doi: 10.1093/treephys/tps057. PubMed DOI

De Micco V, et al. Intra-annual density fluctuations in tree rings: how, when, where and why? IAWA. 2016;37:232–259. doi: 10.1163/22941932-20160132. DOI

Fritts, H. C. Tree Rings and Climate p. 567 (Academic Press, London, 1976).

Schulman, E. Dendroclimatic changes in Semiarid America p. 142 (University of Arizona Press, Tucson, 1956).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...