Radiocarbon offsets and old world chronology as relevant to Mesopotamia, Egypt, Anatolia and Thera (Santorini)
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32807792
PubMed Central
PMC7431540
DOI
10.1038/s41598-020-69287-2
PII: 10.1038/s41598-020-69287-2
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The new IntCal20 radiocarbon record continues decades of successful practice by employing one calibration curve as an approximation for different regions across the hemisphere. Here we investigate three radiocarbon time-series of archaeological and historical importance from the Mediterranean-Anatolian region, which indicate, or may include, offsets from IntCal20 (~0-22 14C years). While modest, these differences are critical for our precise understanding of historical and environmental events across the Mediterranean Basin and Near East. Offsets towards older radiocarbon ages in Mediterranean-Anatolian wood can be explained by a divergence between high-resolution radiocarbon dates from the recent generation of accelerator mass spectrometry (AMS) versus dates from previous technologies, such as low-level gas proportional counting (LLGPC) and liquid scintillation spectrometry (LSS). However, another reason is likely differing growing season lengths and timings, which would affect the seasonal cycle of atmospheric radiocarbon concentrations recorded in different geographic zones. Understanding and correcting these offsets is key to the well-defined calendar placement of a Middle Bronze Age tree-ring chronology. This in turn resolves long-standing debate over Mesopotamian chronology in the earlier second millennium BCE. Last but not least, accurate dating is needed for any further assessment of the societal and environmental impact of the Thera/Santorini volcanic eruption.
Archaeological Service Kanton Thurgau 8510 Frauenfeld Switzerland
Cornell Tree Ring Laboratory Department of Classics Cornell University Ithaca NY 14853 USA
Department of Geography Faculty of Science Masaryk University 611 37 Brno Czech Republic
Department of Geography University of Cambridge Cambridge CB2 3EN UK
Global Change Research Institute CAS 603 00 Brno Czech Republic
Institute of Environmental Physics University of Heidelberg 69120 Heidelberg Germany
Research Laboratory for Archaeology School of Archaeology University of Oxford Oxford OX1 3TG UK
Swiss Federal Research Institute WSL 8903 Birmensdorf Switzerland
Zobrazit více v PubMed
Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 kcal BP). Radiocarbon62, 10.1017/RDC.2020.41 (2020).
van der Plicht, J., Bronk Ramsey, C., Heaton, T. J., Scott, E. M. & Talamo, S. Recent developments in calibration for archaeological and environmental samples. Radiocarbon62, 10.1017/RDC.2020.22 (2020).
Braziunas TF, Fung IY, Stuiver M. The preindustrial atmospheric 14CO2 latitudinal gradient as related to exchanges among atmospheric, oceanic, and terrestrial reservoirs. Glob. Biogeochem. Cycles. 1995;9:565–584.
Büntgen U, et al. Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE. Nat. Commun. 2018;9:3605. PubMed PMC
Kromer B. Regional 14CO2 offsets in the troposphere: Magnitude, mechanisms, and consequences. Science. 2001;294:2529–2532. PubMed
Dee MW, et al. Investigating the likelihood of a reservoir offset in the radiocarbon record for ancient Egypt. J. Archaeol. Sci. 2010;37:687–693.
Bronk RC. Radiocarbon-based chronology for dynastic Egypt. Science. 2010;328:1554–1557. PubMed
Manning SW, et al. Fluctuating radiocarbon offsets observed in the southern Levant and implications for archaeological chronology debates. Proc. Natl Acad. Sci. USA. 2018;115:6141–6146. PubMed PMC
McDonald L, Chivall D, Miles D, Bronk Ramsey C. Seasonal variations in the 14C content of tree rings: Influences on radiocarbon calibration and single-year curve construction. Radiocarbon. 2019;61:185–194.
Manning SW, et al. Mediterranean radiocarbon offsets and calendar dates for prehistory. Sci. Adv. 2020;6:eaaz1096. PubMed PMC
Stuiver M, Braziunas TF. 1998 GRL anthropogenic and solar components of hemispheric 14C. Geophys. Res. Lett. 1998;25:329–332.
Bietak M. The Synchronisation of Civilisations in the Eastern Mediterranean in the Second Millennium BC. Vienna: Verlag der Österreichischen Akademie der Wissenschaften; 2000.
Manning SW, et al. High-precision dendro-14C dating of two cedar wood sequences from First Intermediate Period and Middle Kingdom Egypt and a small regional climate-related 14C divergence. J. Archaeol. Sci. 2014;46:401–416.
Levin I, et al. Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2. Tellus B. 2010;62:26–46.
Flexas J, et al. Photosynthetic limitations in Mediterranean plants: A review. Environ. Exp. Bot. 2014;103:12–23.
McCormac FG, Baillie MGL, Pilcher JR, Kalin RM. Location-dependent differences in the 14C content of wood. Radiocarbon. 1995;37:395–407.
Libby WF. Radiocarbon dating. Science. 1961;133:621–629. PubMed
Manning SW, et al. Integrated tree-ring-radiocarbon high-resolution timeframe to resolve earlier second millennium BCE Mesopotamian chronology. PLoS One. 2016;11(7):e0157144. PubMed PMC
Barjamovic G, Hertel T, Larsen MT. Ups and Downs at Kanesh-Observations on Chronology, History and Society in the Old Assyrian period. Leiden: Nederlands Instituut voor het Nabije Oosten; 2012.
Pruzsinszky R. Mesopotamian Chronology of the 2nd Millennium BC. An introduction to the Textual Evidence and Related Chronological Issues. Vienna: Verlag der Österreichischen Akademie der Wissenschaften; 2009.
Manning SW, Barjamovic G, Lorentzen B. The course of 14C dating does not run smooth: Tree-rings, radiocarbon, and potential impacts of a calibration curve wiggle on dating Mesopotamian chronology. J. Ancient Egypt. Interconnect. 2017;13:70–81.
Bronk Ramsey C, van der Plicht J, Weninger B. ‘Wiggle matching’ radiocarbon dates. Radiocarbon. 2001;43:381–389.
Bronk Ramsey C. Bayesian analysis of radiocarbon dates. Radiocarbon. 2009;51:337–360.
Bronk Ramsey C. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon. 2009;51:1023–1045.
Croutsch C, Tegel W, Rault E. Les puits de l’âge du Bronze du Parc d’Activités du Pays d’Erstein (Bas-Rhin, Alsace): Des analyses dendroarchéologiques à l’étude de l’occupation du sol. Bull. Soc. Préhistor. Franç. 2019;116:743–774.
Croutsch C, Tegel W, Rault E, Pierrevelcin G. Des sites de la fin du Néolithique et de l’âge du Bronze ancien: Nouvelles données sur la chronologie absolue en Alsace (2500–1450 av.J.-C.) In: Montoya C, Fagnart J-L, Locht J-L, editors. Préhistoire de l'Europe du Nord-Ouest: Mobilité, Climats et Identités Culturelles, Volume 3: Néolithique—Âge du Bronze. Paris: Société Préhistorique Française; 2019. pp. 475–481.
Reimer PJ, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years Cal BP. Radiocarbon. 2013;55:1869–1887.
Roaf M. The Fall of Babylon in 1499 NC or 1595 MC. Akkadica. 2012;133:147–174.
de Jong, T. Astronomical fine-tuning of the chronology of the Hammurabi age. Jaarbericht van het Vooraziatisch-Egyptisch Genootschap “Ex Oriente Lux”44, 147–167 (2013).
Nahm W. The case of the lower middle chronology. Altorient. Forsch. 2013;40:350–372.
de Jong, T. Further astronomical fine-tuning of the old Assyrian and Old Babylonian chronologies. Jaarbericht van het Vooraziatisch-Egyptisch Genootschap “Ex Oriente Lux”46, 127–143 (2016–2017).
Reimer PJ, et al. IntCal04 terrestrial radiocarbon age calibration, 0–26 Cal KYR BP. Radiocarbon. 2004;46:1029–1058.
Manning SW. A Test of Time and A Test of Time Revisited. The Volcano of Thera and the Chronology and History of the Aegean and East Mediterranean in the Mid-second Millennium BC. Oxford: Oxbow Books; 2014.
Aston D. Radiocarbon, Wine Jars and New Kingdom chronology. Ägypt. Levante. 2013;22–23:289–315.
Schneider T. Contributions to the chronology of the New Kingdom and the Third Intermediate Period. Ägypt. Levante. 2010;20:373–403.
Aston DA. How early (and how late) Can Khyan really be: An essay based on “conventional archaeological methods”. In: Forstner-Müller I, Moeller N, editors. The Hyksos Ruler Khyan and the Early Second Intermediate Period in Egypt: Problems and Priorities of Current Research. Vienna: Österreichische Archäologisches Institut; 2018. pp. 15–56.
Manning SW, et al. 14C Record and wiggle-match placement for the Anatolian (Gordion Area) Juniper Tree-Ring Chronology ~1729 to 751 Cal BC, and typical Aegean/Anatolian (growing season related) regional 14C offset assessment. Radiocarbon. 2010;52:1571–1597.
Pearson C, et al. Securing timelines in the ancient Mediterranean using multiproxy annual tree-ring data. Proc. Natl. Acad. Sci. U.S.A. 2020;117:8410–8415. PubMed PMC
Pearson, C. et al. Annual variation in atmospheric 14C between 1700 BC and 1480 BC. Radiocarbon62, 10.1017/RDC.2020.14 (2020).
Pearson GW. Precise calendrical dating of known growth-period samples using a ‘curve fitting’ technique. Radiocarbon. 1986;28:292–299.
Wacker L, Güttler D, Goll J, Hurni JP, Synal H-A, Walti N. Radiocarbon dating to a single year by means of rapid atmospheric 14C changes. Radiocarbon. 2014;56:573–579.
Ward GK, Wilson SR. Procedures for comparing and combining radiocarbon age determinations: A critique. Archaeometry. 1978;20:19–31.
Pearson CL, et al. Annual radiocarbon record indicates 16th century BCE date for the Thera eruption. Sci. Adv. 2018;4:eaar8241. PubMed PMC
Güttler D, Wacker L, Kromer B, Friedrich M, Synal H-A. Evidence of 11-year solar cycles in tree rings from 1010 to 1110 AD—progress on high precision AMS measurements. Nucl. Instrum. Methods Phys. Res. B. 2013;294:459–463.
Hogg A, et al. The New Zealand Kauri (Agathis australis) research project: A radiocarbon dating intercomparison of Younger Dryas Wood and implications for IntCal13. Radiocarbon. 2013;55:2035–2048.
Friedrich R, et al. Annual 14C tree-ring data around 400 AD: Mid- and high-latitude records. Radiocarbon. 2019;61:1305–1316.
Kuitems, M., van der Plicht, J. & Jansma, E. Wood from The Netherlands around the time of the Santorini eruption dated by dendrochronology and radiocarbon. Radiocarbon62, 10.1017/RDC.2020.23 (2020).
Friedrich, R. et al. A new annual 14C dataset for calibrating the Thera eruption. Radiocarbon62, 10.1017/RDC.2020.33 (2020).
Fahrni, S. et al. Single-year German oak and Californian bristlecone pine 14C data at the beginning of the Hallstatt Plateau from 865 BC to 626 BC. Radiocarbon 62, 10.1017/RDC.2020.16 (2020).
Manning SW, Kromer B, Dee MW, Friedrich M, Higham TFG, Bronk Ramsey C. Radiocarbon calibration in the mid to later 14th century BC and radiocarbon dating Tell el-Amarna, Egypt. In: Shortland AJ, Bronk Ramsey C, editors. Radiocarbon and the Chronologies of Ancient Egypt. Oxford: Oxbow Books; 2013. pp. 121–145.
Manning SW, et al. Chronology for the Aegean Late Bronze Age. Science. 2006;312:565–569. PubMed
Höflmayer F. The date of the Minoan Santorini eruption: Quantifying the “offset”. Radiocarbon. 2012;54:435–448.
Manning SW, et al. Dating the Thera (Santorini) eruption: Archaeological and scientific evidence supporting a high chronology. Antiquity. 2014;88:1164–1179.
Cherubini P, et al. Olive tree-ring problematic dating: A comparative analysis on Santorini (Greece) PLoS One. 2013;8(1):e54730. PubMed PMC
Friedrich WL, et al. Santorini eruption radiocarbon dated to 1627–1600 BC. Science. 2006;312:548. PubMed
Ritner RK, Moeller N. The Ahmose ‘Tempest Stela’, Thera and comparative chronology. J. Near Eastern Stud. 2014;73:1–19.
Bruins HJ, van der Plicht J, Mazar A. 14C dates from Tel Rehov: Iron-Age chronology, pharaohs, and Hebrew kings. Science. 2003;300:315–318. PubMed
Weiss H, et al. Tell Leilan Akkadian imperialization, collapse and short-lived reoccupation defined by high-resolution radiocarbon dating. In: Weiss H, et al., editors. Seven Generations Since the Fall of Akkad, Studia Chaburensia 3. Wiesbaden: Harrassowitz Verlag; 2012. pp. 163–192.
Regev J, et al. Chronology of the Early Bronze Age in the Southern Levant: New analysis for a high chronology. Radiocarbon. 2012;54:525–566.
Kutschera W, et al. The chronology of Tell el-Dab‘a: A crucial meeting point of 14C dating, archaeology, and Egyptology in the 2nd millennium BC. Radiocarbon. 2012;54:407–422.
Toffolo MB, et al. Towards an absolute chronology for the Aegean Iron Age: New radiocarbon dates from Lefkandi, Kalapodi and Corinth. PLoS One. 2013;8(12):e83117. PubMed PMC
Toffolo MB, Arie E, Martin MAS, Boaretto E, Finkelstein I. Absolute chronology of Megiddo, Israel, in the Late Bronze Age and Iron Ages: High-resolution radiocarbon dating. Radiocarbon. 2014;56:221–244.
Höflmayer F, et al. New evidence for Middle Bronze Age chronology and synchronisms in the levant: Radiocarbon dates from Tell el-Burak, Tell el-Dab‘a, and Tel Ifshar Compared. Bull. Am. Sch. Orient. Res. 2016;375:53–76.
Kuniholm PI, Newton MW, Liebhart RF. Dendrochronology at Gordion. In: Rose CB, Darbyshire G, editors. The New Chronology of Iron Age Gordion. Philadelphia: University of Pennsylvania Museum of Archaeology and Anthropology; 2011. pp. 79–122.
Němec N, Wacker L, Hajdas I, Gäggeler H. Alternative methods for cellulose preparation for AMS measurement. Radiocarbon. 2010;52:1358–1370.
Sookdeo, A. et al. Quality dating: A well-defined protocol implemented at ETH for high-precision14C-dates tested on late glacial wood. Radiocarbon62, 10.1017/rdc.2019.132 (2020).
McAneney J, Baillie M. Absolute tree-ring dates for the Late Bronze Age eruptions of Aniakchak and Thera in light of a proposed revision of ice-core chronologies. Antiquity. 2019;93:99–112.
Salzer MW, Hughes MK. Bristlecone pine tree rings and volcanic eruptions over the last 5000 yr. Quatern. Res. 2007;67:57–68.
Helama S, et al. A chronology of climatic downturns through the mid- and late-Holocene: Tracing the distant effects of explosive eruptions from palaeoclimatic and historical evidence in northern Europe. Polar Res. 2013;32:15866.
The importance of "year zero" in interdisciplinary studies of climate and history