The influence of decision-making in tree ring-based climate reconstructions
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, U.S. Gov't, Non-P.H.S., práce podpořená grantem
PubMed
34099683
PubMed Central
PMC8184857
DOI
10.1038/s41467-021-23627-6
PII: 10.1038/s41467-021-23627-6
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Tree-ring chronologies underpin the majority of annually-resolved reconstructions of Common Era climate. However, they are derived using different datasets and techniques, the ramifications of which have hitherto been little explored. Here, we report the results of a double-blind experiment that yielded 15 Northern Hemisphere summer temperature reconstructions from a common network of regional tree-ring width datasets. Taken together as an ensemble, the Common Era reconstruction mean correlates with instrumental temperatures from 1794-2016 CE at 0.79 (p < 0.001), reveals summer cooling in the years following large volcanic eruptions, and exhibits strong warming since the 1980s. Differing in their mean, variance, amplitude, sensitivity, and persistence, the ensemble members demonstrate the influence of subjectivity in the reconstruction process. We therefore recommend the routine use of ensemble reconstruction approaches to provide a more consensual picture of past climate variability.
Aix Marseille University CNRS IRD INRA Coll France CEREGE Aix en Provence France
ARC Centre of Excellence for Australian Biodiversity and Heritage University of NSW Sydney Australia
Centre d'Études Nordiques Université Laval Québec QC Canada
Department F A Forel for Environmental and Aquatic Sciences University of Geneva Geneva Switzerland
Department of Atmospheric and Environmental Sciences University at Albany Albany NY USA
Department of Biology Chemistry and Geography University of Quebec in Rimouski Rimouski QC Canada
Department of Earth and Climate Sciences San Francisco State University San Francisco CA USA
Department of Earth and Planetary Sciences Harvard University Cambridge MA USA
Department of Earth Sciences Goteborg University Goteborg Sweden
Department of Earth Sciences University of Geneva Geneva Switzerland
Department of Geography Environment and Society University of Minnesota Minneapolis MN USA
Department of Geography Faculty of Science Masaryk University Brno Czech Republic
Department of Geography Johannes Gutenberg University Mainz Germany
Department of Geography Université du Québec à Montréal Montréal QC Canada
Department of Geography University of Cambridge Cambridge UK
Department of Geography University of Innsbruck Innsbruck Austria
GEOTOP Université du Québec à Montréal Montréal QC Canada
Global Change Research Centre Brno Czech Republic
GREMA and Forest Research Institute Université du Québec en Abitibi Témiscamingue Amos Canada
Institute for Environmental Sciences University of Geneva Geneva Switzerland
Institute of Ecology and Geography Siberian Federal University Krasnoyarsk Russia
Institute of Geography Friedrich Alexander University of Erlangen Nürnberg Erlangen Germany
Institute of Humanities Siberian Federal University Krasnoyarsk Russia
Laboratory of Tree Ring Research University of Arizona Tucson AZ USA
Lamont Doherty Earth Observatory of Columbia University Palisades NY USA
McDonald Institute for Archaeological Research Cambridge UK
Natural Resources Institute Finland Rovaniemi Finland
Potsdam Institute for Climate Impact Research Potsdam Germany
School of Earth and Environmental Sciences University of St Andrews Scotland UK
School of Ecosystem and Forest Sciences University of Melbourne Richmond Australia
School of Statistics University of Minnesota Minneapolis MN USA
Sukachev Institute of Forest SB RAS Krasnoyarsk Russia
Swiss Federal Research Institute Birmensdorf Switzerland
Université Clermont Auvergne Geolab UMR 6042 CNRS Clermont Ferrand France
Zobrazit více v PubMed
Esper J, et al. Ranking of tree-ring based temperature reconstructions of the past millennium. Quat. Sci. Rev. 2016;145:134–151. doi: 10.1016/j.quascirev.2016.05.009. DOI
PAGES2k Consortium. A global multiproxy database for temperature reconstructions of the Common Era. Sci. Data. 2017;4:170088. doi: 10.1038/sdata.2017.88. PubMed DOI PMC
Büntgen U, et al. Prominent role of volcanism in Common Era climate variability and human history. Dendrochronologia. 2020;64:125757. doi: 10.1016/j.dendro.2020.125757. DOI
Ljungqvist FC, et al. Ranking of tree-ring based hydroclimate reconstructions of the past millennium. Quat. Sci. Rev. 2020;230:106074. doi: 10.1016/j.quascirev.2019.106074. DOI
St. George S. An overview of tree-ring width records across the Northern Hemisphere. Quat. Sci. Rev. 2014;95:132–150. doi: 10.1016/j.quascirev.2014.04.029. DOI
Büntgen U, et al. Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE. Nat. Commun. 2018;9:3605. doi: 10.1038/s41467-018-06036-0. PubMed DOI PMC
Lücke LJ, Hegerl GC, Schurer AP, Wilson R. Effects of memory biases on variability of temperature reconstructions. J. Clim. 2019;32:8713–8731. doi: 10.1175/JCLI-D-19-0184.1. DOI
Ludescher J, Bunde A, Büntgen U, Schellnhuber HJ. Setting the tree-ring record straight. Clim. Dyn. 2020;3:3017–3024. doi: 10.1007/s00382-020-05433-w. DOI
Esper J, Schneider L, Smerdon J, Schöne B, Büntgen U. Signals and memory in tree-ring width and density data. Dendrochronologia. 2015;35:62–70. doi: 10.1016/j.dendro.2015.07.001. DOI
Esper J, et al. Orbital forcing of tree-ring data. Nat. Clim. Change. 2012;2:862–866. doi: 10.1038/nclimate1589. DOI
Frank DC, et al. Ensemble reconstruction constraints of the global carbon cycle sensitivity to climate. Nature. 2010;463:527–530. doi: 10.1038/nature08769. PubMed DOI
Luterbacher J, et al. European summer temperatures since Roman times. Environ. Res. Lett. 2016;11:02400. doi: 10.1088/1748-9326/11/2/024001. DOI
Werner JP, Divine DV, Ljungqvist FC, Nilsen T, Francus P. Spatio-temporal variability of Arctic summer temperatures over the past 2 millennia. Clim. 2018;14:527–557.
Otto-Bliesner BL, et al. Climate variability and change since 850 CE: an ensemble approach with the Community Earth System Model (CESM) Bull. Am. Meteorol. Soc. 2016;97:735–754. doi: 10.1175/BAMS-D-14-00233.1. DOI
PAGES2k Consortium. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nat. Geosci. 2019;12:643–649. doi: 10.1038/s41561-019-0400-0. PubMed DOI PMC
Cook ER, Briffa KR, Meko DM, Graybill DS, Funkhouser G. The ‘segment length curse’ in long tree-ring chronology development for paleoclimatic studies. Holocene. 1995;5:229–237. doi: 10.1177/095968369500500211. DOI
Briffa KR, et al. Low-frequency temperature variations from a northern tree ring density network. J. Geophys. Res. 2001;106:2929–2941. doi: 10.1029/2000JD900617. DOI
Esper J, Cook ER, Krusic PJ, Peters K, Schweingruber FH. Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree-Ring Res. 2003;59:81–98.
Frank DC, Büntgen U, Böhm R, Maugeri M, Esper J. Warmer early instrumental measurements versus colder reconstructed temperatures: shooting at a moving target. Quat. Sci. Rev. 2007;26:3298–3310. doi: 10.1016/j.quascirev.2007.08.002. DOI
D’Arrigo R, Wilson R, Liepert B, Cherubini P. On the ‘Divergence Problem’ in northern forests: a review of the tree-ring evidence and possible causes. Glob. Planet. Change. 2008;60:289–305. doi: 10.1016/j.gloplacha.2007.03.004. DOI
Briffa KR, et al. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature. 1998;391:678–682. doi: 10.1038/35596. DOI
Esper J, Frank D. Divergence pitfalls in tree-ring research. Clim. Change. 2009;94:261–266. doi: 10.1007/s10584-009-9594-2. DOI
Kirdyanov AV, et al. Ecological and conceptual consequences of Arctic pollution. Ecol. Lett. 2020;23:1827–1837. doi: 10.1111/ele.13611. PubMed DOI
Di Cosmo N, Oppenheimer C, Büntgen U. Interplay of environmental and socio-political factors in the downfall of the Eastern Türk Empire in 630 CE. Clim. Change. 2017;145:383–395. doi: 10.1007/s10584-017-2111-0. DOI
Büntgen U, et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat. Geosci. 2016;9:231–236. doi: 10.1038/ngeo2652. DOI
Klippel L, St. George S, Büntgen U, Krusic PJ, Esper J. Differing pre-industrial cooling trends between tree rings and lower-resolution temperature proxies. Clim. 2020;16:729–742.
Toohey M, Sigl M. Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE. Earth Syst. Sci. Data. 2017;9:809–831. doi: 10.5194/essd-9-809-2017. DOI
Schneider L, et al. Revising midlatitude summer temperatures back to A.D. 600 based on a wood density network. Geophys. Res. Lett. 2015;42:4556–4562. doi: 10.1002/2015GL063956. DOI
Frank D, Esper J, Cook ER. Adjustment for proxy number and coherence in a large-scale temperature reconstruction. Geophys. Res. Lett. 2007;34:L16709. doi: 10.1029/2007GL030571. DOI
Eichner J, Koscielny-Bunde E, Bunde A, Havlin S, Schellnhuber HJ. Power-law persistence and trends in the atmosphere: a detailed study of long temperature record. Phys. Rev. 2003;68:046133. PubMed
Stoffel M, et al. Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1,500 years. Nat. Geosci. 2015;8:784–788. doi: 10.1038/ngeo2526. DOI
Wilson RJS, et al. Last millennium Northern Hemisphere summer temperatures from tree rings: Part I: the long-term context. Quat. Sci. Rev. 2016;134:1–18. doi: 10.1016/j.quascirev.2015.12.005. DOI
Salzer MW, Bunn AG, Graham NE, Hughes MK. Five millennia of paleotemperature from tree-rings in the Great Basin, USA. Clim. Dyn. 2014;42:1517–1526. doi: 10.1007/s00382-013-1911-9. DOI
Salzer MW, Kipfmueller KF. Reconstructed temperature and precipitation on a millennial timescale from tree-rings in the Southern Colorado Plateau, USA. Clim. Change. 2005;70:465–487. doi: 10.1007/s10584-005-5922-3. DOI
Gennaretti F, Arseneault D, Nicault A, Perreault L, Bégin Y. Volcano-induced regime shifts in millennial tree-ring chronologies from northeastern North America. Proc. Natl Acad. Sci. USA. 2014;111:10077–10082. doi: 10.1073/pnas.1324220111. PubMed DOI PMC
Esper J, Düthorn E, Krusic PJ, Timonen M, Büntgen U. Northern European summer temperature variations over the Common Era from integrated tree‐ring density records. J. Quat. Sci. 2014;29:487–494. doi: 10.1002/jqs.2726. DOI
Melvin TM, Grudd H, Briffa KR. Potential bias in ‘updating’ tree-ring chronologies using regional curve standardisation: Re-processing 1500 years of Torneträsk density and ring-width data. Holocene. 2012;23:364–373. doi: 10.1177/0959683612460791. DOI
Büntgen U, et al. 2500 years of European climate variability and human susceptibility. Science. 2011;331:578–582. doi: 10.1126/science.1197175. PubMed DOI
Hantemirov RM, Shiyatov SG. A continuous multimillennial ring-width chronology in Yamal, northwestern Siberia. Holocene. 2002;12:717–726. doi: 10.1191/0959683602hl585rp. DOI
Naurzbaev MM, Vaganov EA, Sidorova OV, Schweingruber FH. Summer temperatures in eastern Taimyr inferred from a 2427-year late-Holocene tree-ring chronology and earlier floating series. Holocene. 2002;12:727–736. doi: 10.1191/0959683602hl586rp. DOI
Churakova (Sidorova) OV, et al. Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions. Clim. Past. 2019;15:685–700. doi: 10.5194/cp-15-685-2019. DOI
Rhode R, et al. Berkeley Earth temperature averaging process. Geoinformat. Geostat. Overv. 2013;1:1.
Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD. Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J. Geophys. Res. 2006;111:D12106. doi: 10.1029/2005JD006548. DOI
Jones PD, et al. Hemispheric and large-scale land-surface air temperature variations: an extensive revision and update to 2010. J. Geophys. Res. 2012;117:D05127.
Morice CP, Kennedy JJ, Rayner NA, Jones PD. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J. Geophys. Res. 2012;117:D08101.
Osborn TJ, Jones PD. The CRUTEM4 land-surface air temperature data set: construction, previous versions and dissemination via Google Earth. Earth Syst. Sci. Data. 2014;6:61–68. doi: 10.5194/essd-6-61-2014. DOI
Harris I, Osborn TJ, Jones P, Lister D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Nat. Sci. Data. 2020;7:109. doi: 10.1038/s41597-020-0453-3. PubMed DOI PMC
Cowtan K, Way RG. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 2014;140:1935e1944. doi: 10.1002/qj.2297. DOI
Melvin TM, Briffa KR. CRUST: software for the implementation of regional chronology standardisation: part 1. Signal-free RCS. Dendrochronologia. 2014;32:7–20. doi: 10.1016/j.dendro.2013.06.002. DOI
Nicault A, Guiot J, Edouard J-L, Brewer S. Preserving long-term fluctuations in standardisation of tree-ring series by the adaptive regional growth curve (ARGC) and its validation with southern alps pdsi reconstruction. Dendrochronologia. 2010;28:1–12. doi: 10.1016/j.dendro.2008.02.003. DOI
Esper J, Frank DC, Wilson RJS, Briffa KR. Effect of scaling and regression on reconstructed temperature amplitude for the past millennium. Geophys. Res. Lett. 2005;32:L07711. doi: 10.1029/2004GL021236. DOI
Cook ER, D’Arrigo RD, Mann ME. A well-verified, multiproxy reconstruction of the winter North Atlantic Oscillation index since A.D. 1400. J. Clim. 2002;15:1754–1764. doi: 10.1175/1520-0442(2002)015<1754:AWVMRO>2.0.CO;2. DOI
Wilson R, et al. Reconstructing ENSO: the influence of method, proxy data, climate forcing and teleconnections. J. Quat. Sci. 2010;25:62–78. doi: 10.1002/jqs.1297. DOI
Tierney JE, et al. Tropical sea surface temperatures for the past four centuries reconstructed from coral archives. Paleoceanography. 2015;30:226e252. doi: 10.1002/2014PA002717. DOI
Guiot J, Corona C, ESCARSEL members. Growing season temperatures in Europe and climate forcings over the past 1400 years. PLoS ONE. 2010;5:e9972. doi: 10.1371/journal.pone.0009972. PubMed DOI PMC
Barber, D. Bayesian Reasoning and Machine Learning (Cambridge University Press, 2012).
Lennartz S, Bunde A. Eliminating finite-size effects and detecting the amount of white noise in short records with long-term memory. Phys. Rev. 2009;79:066101. PubMed
Kantelhardt JW, Koscielny-Bunde E, Rego HHA, Havlin S, Bunde A. Detecting long-range correlations with detrended fluctuation analysis. Physica A. 2001;295:441–454. doi: 10.1016/S0378-4371(01)00144-3. DOI
Koscielny-Bunde E, et al. Indication of a universal persistence law governing atmospheric variability. Phys. Rev. Lett. 1998;81:729–732. doi: 10.1103/PhysRevLett.81.729. DOI
Pelletier JD, Turcotte DL. Long-range persistence in climatological and hydrological time series: analysis, modelling and application to drought hazard assessment. J. Hydrol. 1997;203:198–208. doi: 10.1016/S0022-1694(97)00102-9. DOI
2023 summer warmth unparalleled over the past 2,000 years
Revising Alpine summer temperatures since 881 CE
Increasing volatility of reconstructed Morava River warm-season flow, Czech Republic
Fennoscandian tree-ring anatomy shows a warmer modern than medieval climate