The influence of decision-making in tree ring-based climate reconstructions

. 2021 Jun 07 ; 12 (1) : 3411. [epub] 20210607

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, Research Support, U.S. Gov't, Non-P.H.S., práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34099683
Odkazy

PubMed 34099683
PubMed Central PMC8184857
DOI 10.1038/s41467-021-23627-6
PII: 10.1038/s41467-021-23627-6
Knihovny.cz E-zdroje

Tree-ring chronologies underpin the majority of annually-resolved reconstructions of Common Era climate. However, they are derived using different datasets and techniques, the ramifications of which have hitherto been little explored. Here, we report the results of a double-blind experiment that yielded 15 Northern Hemisphere summer temperature reconstructions from a common network of regional tree-ring width datasets. Taken together as an ensemble, the Common Era reconstruction mean correlates with instrumental temperatures from 1794-2016 CE at 0.79 (p < 0.001), reveals summer cooling in the years following large volcanic eruptions, and exhibits strong warming since the 1980s. Differing in their mean, variance, amplitude, sensitivity, and persistence, the ensemble members demonstrate the influence of subjectivity in the reconstruction process. We therefore recommend the routine use of ensemble reconstruction approaches to provide a more consensual picture of past climate variability.

Aix Marseille University CNRS IRD INRA Coll France CEREGE Aix en Provence France

ARC Centre of Excellence for Australian Biodiversity and Heritage University of NSW Sydney Australia

CAS Centre for Excellence in Tibetan Plateau Earth Sciences Chinese Academy of Sciences Beijing China

Centre d'Études Nordiques Université Laval Québec QC Canada

Department F A Forel for Environmental and Aquatic Sciences University of Geneva Geneva Switzerland

Department of Atmospheric and Environmental Sciences University at Albany Albany NY USA

Department of Biology Chemistry and Geography University of Quebec in Rimouski Rimouski QC Canada

Department of Earth and Climate Sciences San Francisco State University San Francisco CA USA

Department of Earth and Planetary Sciences Harvard University Cambridge MA USA

Department of Earth Sciences Goteborg University Goteborg Sweden

Department of Earth Sciences University of Geneva Geneva Switzerland

Department of Geography Environment and Society University of Minnesota Minneapolis MN USA

Department of Geography Faculty of Science Masaryk University Brno Czech Republic

Department of Geography Johannes Gutenberg University Mainz Germany

Department of Geography Université du Québec à Montréal Montréal QC Canada

Department of Geography University of Cambridge Cambridge UK

Department of Geography University of Innsbruck Innsbruck Austria

Department of Physical Geography Bolin Centre for Climate Research Stockholm University Stockholm Sweden

GEOTOP Université du Québec à Montréal Montréal QC Canada

Global Change Research Centre Brno Czech Republic

GREMA and Forest Research Institute Université du Québec en Abitibi Témiscamingue Amos Canada

Institute for Environmental Sciences University of Geneva Geneva Switzerland

Institute of Ecology and Geography Siberian Federal University Krasnoyarsk Russia

Institute of Geography Friedrich Alexander University of Erlangen Nürnberg Erlangen Germany

Institute of Humanities Siberian Federal University Krasnoyarsk Russia

Key Laboratory of Desert and Desertification Northwest Institute of Eco Environment and Resources Chinese Academy of Sciences Lanzhou China

Laboratory of Tree Ring Research University of Arizona Tucson AZ USA

Lamont Doherty Earth Observatory of Columbia University Palisades NY USA

McDonald Institute for Archaeological Research Cambridge UK

Natural Resources Institute Finland Rovaniemi Finland

Potsdam Institute for Climate Impact Research Potsdam Germany

Qinghai Research Centre of Qilian Mountain National Park Academy of Plateau Science and Sustainability and Qinghai Normal University Xining China

School of Earth and Environmental Sciences University of St Andrews Scotland UK

School of Ecosystem and Forest Sciences University of Melbourne Richmond Australia

School of Geography Development and Environment and Laboratory of Tree Ring Research University of Arizona Tucson AZ USA

School of Statistics University of Minnesota Minneapolis MN USA

State Key Laboratory of Cryospheric Sciences Northwest Institute of Eco Environment and Resources Chinese Academy of Sciences Lanzhou China

Sukachev Institute of Forest SB RAS Krasnoyarsk Russia

Swiss Federal Research Institute Birmensdorf Switzerland

Université Clermont Auvergne Geolab UMR 6042 CNRS Clermont Ferrand France

Zobrazit více v PubMed

Esper J, et al. Ranking of tree-ring based temperature reconstructions of the past millennium. Quat. Sci. Rev. 2016;145:134–151. doi: 10.1016/j.quascirev.2016.05.009. DOI

PAGES2k Consortium. A global multiproxy database for temperature reconstructions of the Common Era. Sci. Data. 2017;4:170088. doi: 10.1038/sdata.2017.88. PubMed DOI PMC

Büntgen U, et al. Prominent role of volcanism in Common Era climate variability and human history. Dendrochronologia. 2020;64:125757. doi: 10.1016/j.dendro.2020.125757. DOI

Ljungqvist FC, et al. Ranking of tree-ring based hydroclimate reconstructions of the past millennium. Quat. Sci. Rev. 2020;230:106074. doi: 10.1016/j.quascirev.2019.106074. DOI

St. George S. An overview of tree-ring width records across the Northern Hemisphere. Quat. Sci. Rev. 2014;95:132–150. doi: 10.1016/j.quascirev.2014.04.029. DOI

Büntgen U, et al. Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE. Nat. Commun. 2018;9:3605. doi: 10.1038/s41467-018-06036-0. PubMed DOI PMC

Lücke LJ, Hegerl GC, Schurer AP, Wilson R. Effects of memory biases on variability of temperature reconstructions. J. Clim. 2019;32:8713–8731. doi: 10.1175/JCLI-D-19-0184.1. DOI

Ludescher J, Bunde A, Büntgen U, Schellnhuber HJ. Setting the tree-ring record straight. Clim. Dyn. 2020;3:3017–3024. doi: 10.1007/s00382-020-05433-w. DOI

Esper J, Schneider L, Smerdon J, Schöne B, Büntgen U. Signals and memory in tree-ring width and density data. Dendrochronologia. 2015;35:62–70. doi: 10.1016/j.dendro.2015.07.001. DOI

Esper J, et al. Orbital forcing of tree-ring data. Nat. Clim. Change. 2012;2:862–866. doi: 10.1038/nclimate1589. DOI

Frank DC, et al. Ensemble reconstruction constraints of the global carbon cycle sensitivity to climate. Nature. 2010;463:527–530. doi: 10.1038/nature08769. PubMed DOI

Luterbacher J, et al. European summer temperatures since Roman times. Environ. Res. Lett. 2016;11:02400. doi: 10.1088/1748-9326/11/2/024001. DOI

Werner JP, Divine DV, Ljungqvist FC, Nilsen T, Francus P. Spatio-temporal variability of Arctic summer temperatures over the past 2 millennia. Clim. 2018;14:527–557.

Otto-Bliesner BL, et al. Climate variability and change since 850 CE: an ensemble approach with the Community Earth System Model (CESM) Bull. Am. Meteorol. Soc. 2016;97:735–754. doi: 10.1175/BAMS-D-14-00233.1. DOI

PAGES2k Consortium. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nat. Geosci. 2019;12:643–649. doi: 10.1038/s41561-019-0400-0. PubMed DOI PMC

Cook ER, Briffa KR, Meko DM, Graybill DS, Funkhouser G. The ‘segment length curse’ in long tree-ring chronology development for paleoclimatic studies. Holocene. 1995;5:229–237. doi: 10.1177/095968369500500211. DOI

Briffa KR, et al. Low-frequency temperature variations from a northern tree ring density network. J. Geophys. Res. 2001;106:2929–2941. doi: 10.1029/2000JD900617. DOI

Esper J, Cook ER, Krusic PJ, Peters K, Schweingruber FH. Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree-Ring Res. 2003;59:81–98.

Frank DC, Büntgen U, Böhm R, Maugeri M, Esper J. Warmer early instrumental measurements versus colder reconstructed temperatures: shooting at a moving target. Quat. Sci. Rev. 2007;26:3298–3310. doi: 10.1016/j.quascirev.2007.08.002. DOI

D’Arrigo R, Wilson R, Liepert B, Cherubini P. On the ‘Divergence Problem’ in northern forests: a review of the tree-ring evidence and possible causes. Glob. Planet. Change. 2008;60:289–305. doi: 10.1016/j.gloplacha.2007.03.004. DOI

Briffa KR, et al. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature. 1998;391:678–682. doi: 10.1038/35596. DOI

Esper J, Frank D. Divergence pitfalls in tree-ring research. Clim. Change. 2009;94:261–266. doi: 10.1007/s10584-009-9594-2. DOI

Kirdyanov AV, et al. Ecological and conceptual consequences of Arctic pollution. Ecol. Lett. 2020;23:1827–1837. doi: 10.1111/ele.13611. PubMed DOI

Di Cosmo N, Oppenheimer C, Büntgen U. Interplay of environmental and socio-political factors in the downfall of the Eastern Türk Empire in 630 CE. Clim. Change. 2017;145:383–395. doi: 10.1007/s10584-017-2111-0. DOI

Büntgen U, et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat. Geosci. 2016;9:231–236. doi: 10.1038/ngeo2652. DOI

Klippel L, St. George S, Büntgen U, Krusic PJ, Esper J. Differing pre-industrial cooling trends between tree rings and lower-resolution temperature proxies. Clim. 2020;16:729–742.

Toohey M, Sigl M. Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE. Earth Syst. Sci. Data. 2017;9:809–831. doi: 10.5194/essd-9-809-2017. DOI

Schneider L, et al. Revising midlatitude summer temperatures back to A.D. 600 based on a wood density network. Geophys. Res. Lett. 2015;42:4556–4562. doi: 10.1002/2015GL063956. DOI

Frank D, Esper J, Cook ER. Adjustment for proxy number and coherence in a large-scale temperature reconstruction. Geophys. Res. Lett. 2007;34:L16709. doi: 10.1029/2007GL030571. DOI

Eichner J, Koscielny-Bunde E, Bunde A, Havlin S, Schellnhuber HJ. Power-law persistence and trends in the atmosphere: a detailed study of long temperature record. Phys. Rev. 2003;68:046133. PubMed

Stoffel M, et al. Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1,500 years. Nat. Geosci. 2015;8:784–788. doi: 10.1038/ngeo2526. DOI

Wilson RJS, et al. Last millennium Northern Hemisphere summer temperatures from tree rings: Part I: the long-term context. Quat. Sci. Rev. 2016;134:1–18. doi: 10.1016/j.quascirev.2015.12.005. DOI

Salzer MW, Bunn AG, Graham NE, Hughes MK. Five millennia of paleotemperature from tree-rings in the Great Basin, USA. Clim. Dyn. 2014;42:1517–1526. doi: 10.1007/s00382-013-1911-9. DOI

Salzer MW, Kipfmueller KF. Reconstructed temperature and precipitation on a millennial timescale from tree-rings in the Southern Colorado Plateau, USA. Clim. Change. 2005;70:465–487. doi: 10.1007/s10584-005-5922-3. DOI

Gennaretti F, Arseneault D, Nicault A, Perreault L, Bégin Y. Volcano-induced regime shifts in millennial tree-ring chronologies from northeastern North America. Proc. Natl Acad. Sci. USA. 2014;111:10077–10082. doi: 10.1073/pnas.1324220111. PubMed DOI PMC

Esper J, Düthorn E, Krusic PJ, Timonen M, Büntgen U. Northern European summer temperature variations over the Common Era from integrated tree‐ring density records. J. Quat. Sci. 2014;29:487–494. doi: 10.1002/jqs.2726. DOI

Melvin TM, Grudd H, Briffa KR. Potential bias in ‘updating’ tree-ring chronologies using regional curve standardisation: Re-processing 1500 years of Torneträsk density and ring-width data. Holocene. 2012;23:364–373. doi: 10.1177/0959683612460791. DOI

Büntgen U, et al. 2500 years of European climate variability and human susceptibility. Science. 2011;331:578–582. doi: 10.1126/science.1197175. PubMed DOI

Hantemirov RM, Shiyatov SG. A continuous multimillennial ring-width chronology in Yamal, northwestern Siberia. Holocene. 2002;12:717–726. doi: 10.1191/0959683602hl585rp. DOI

Naurzbaev MM, Vaganov EA, Sidorova OV, Schweingruber FH. Summer temperatures in eastern Taimyr inferred from a 2427-year late-Holocene tree-ring chronology and earlier floating series. Holocene. 2002;12:727–736. doi: 10.1191/0959683602hl586rp. DOI

Churakova (Sidorova) OV, et al. Siberian tree-ring and stable isotope proxies as indicators of temperature and moisture changes after major stratospheric volcanic eruptions. Clim. Past. 2019;15:685–700. doi: 10.5194/cp-15-685-2019. DOI

Rhode R, et al. Berkeley Earth temperature averaging process. Geoinformat. Geostat. Overv. 2013;1:1.

Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD. Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J. Geophys. Res. 2006;111:D12106. doi: 10.1029/2005JD006548. DOI

Jones PD, et al. Hemispheric and large-scale land-surface air temperature variations: an extensive revision and update to 2010. J. Geophys. Res. 2012;117:D05127.

Morice CP, Kennedy JJ, Rayner NA, Jones PD. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J. Geophys. Res. 2012;117:D08101.

Osborn TJ, Jones PD. The CRUTEM4 land-surface air temperature data set: construction, previous versions and dissemination via Google Earth. Earth Syst. Sci. Data. 2014;6:61–68. doi: 10.5194/essd-6-61-2014. DOI

Harris I, Osborn TJ, Jones P, Lister D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Nat. Sci. Data. 2020;7:109. doi: 10.1038/s41597-020-0453-3. PubMed DOI PMC

Cowtan K, Way RG. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 2014;140:1935e1944. doi: 10.1002/qj.2297. DOI

Melvin TM, Briffa KR. CRUST: software for the implementation of regional chronology standardisation: part 1. Signal-free RCS. Dendrochronologia. 2014;32:7–20. doi: 10.1016/j.dendro.2013.06.002. DOI

Nicault A, Guiot J, Edouard J-L, Brewer S. Preserving long-term fluctuations in standardisation of tree-ring series by the adaptive regional growth curve (ARGC) and its validation with southern alps pdsi reconstruction. Dendrochronologia. 2010;28:1–12. doi: 10.1016/j.dendro.2008.02.003. DOI

Esper J, Frank DC, Wilson RJS, Briffa KR. Effect of scaling and regression on reconstructed temperature amplitude for the past millennium. Geophys. Res. Lett. 2005;32:L07711. doi: 10.1029/2004GL021236. DOI

Cook ER, D’Arrigo RD, Mann ME. A well-verified, multiproxy reconstruction of the winter North Atlantic Oscillation index since A.D. 1400. J. Clim. 2002;15:1754–1764. doi: 10.1175/1520-0442(2002)015<1754:AWVMRO>2.0.CO;2. DOI

Wilson R, et al. Reconstructing ENSO: the influence of method, proxy data, climate forcing and teleconnections. J. Quat. Sci. 2010;25:62–78. doi: 10.1002/jqs.1297. DOI

Tierney JE, et al. Tropical sea surface temperatures for the past four centuries reconstructed from coral archives. Paleoceanography. 2015;30:226e252. doi: 10.1002/2014PA002717. DOI

Guiot J, Corona C, ESCARSEL members. Growing season temperatures in Europe and climate forcings over the past 1400 years. PLoS ONE. 2010;5:e9972. doi: 10.1371/journal.pone.0009972. PubMed DOI PMC

Barber, D. Bayesian Reasoning and Machine Learning (Cambridge University Press, 2012).

Lennartz S, Bunde A. Eliminating finite-size effects and detecting the amount of white noise in short records with long-term memory. Phys. Rev. 2009;79:066101. PubMed

Kantelhardt JW, Koscielny-Bunde E, Rego HHA, Havlin S, Bunde A. Detecting long-range correlations with detrended fluctuation analysis. Physica A. 2001;295:441–454. doi: 10.1016/S0378-4371(01)00144-3. DOI

Koscielny-Bunde E, et al. Indication of a universal persistence law governing atmospheric variability. Phys. Rev. Lett. 1998;81:729–732. doi: 10.1103/PhysRevLett.81.729. DOI

Pelletier JD, Turcotte DL. Long-range persistence in climatological and hydrological time series: analysis, modelling and application to drought hazard assessment. J. Hydrol. 1997;203:198–208. doi: 10.1016/S0022-1694(97)00102-9. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...