Increasing volatility of reconstructed Morava River warm-season flow, Czech Republic
Status PubMed-not-MEDLINE Language English Country Netherlands Media print
Document type Journal Article
PubMed
38145056
PubMed Central
PMC10739599
DOI
10.1016/j.ejrh.2023.101534
PII: S2214-5818(23)00221-5
Knihovny.cz E-resources
- Keywords
- Baseflow, Extremes, Morava, Reconstruction, Tree rings,
- Publication type
- Journal Article MeSH
STUDY REGION: The Morava River basin, Czech Republic, Danube Basin, Central Europe. STUDY FOCUS: Hydrological summer extremes represent a prominent natural hazard in Central Europe. River low flows constrain transport and water supply for agriculture, industry and society, and flood events are known to cause material damage and human loss. However, understanding changes in the frequency and magnitude of hydrological extremes is associated with great uncertainty due to the limited number of gauge observations. Here, we compile a tree-ring network to reconstruct the July-September baseflow variability of the Morava River from 1745 to 2018 CE. An ensemble of reconstructions was produced to assess the impact of calibration period length and trend on the long-term mean of reconstruction estimates. The final estimates represent the first baseflow reconstruction based on tree rings from the European continent. Simulated flows and historical documentation provide quantitative and qualitative validation of estimates prior to the 20th century. NEW HYDROLOGICAL INSIGHTS FOR THE REGION: The reconstructions indicate an increased variability of warm-season flow during the past 100 years, with the most extreme high and low flows occurring after the start of instrumental observations. When analyzing the entire reconstruction, the negative trend in baseflow displayed by gauges across the basin after 1960 is not unprecedented. We conjecture that even lower flows could likely occur in the future considering that pre-instrumental trends were not primarily driven by rising temperature (and the evaporative demand) in contrast to the recent trends.
Department of Agrosystems and Bioclimatology Mendel University in Brno Brno Czech Republic
Department of Civil Environmental and Geodetic Engineering Ohio State University United States
Department of Geography Johannes Gutenberg University Mainz Germany
Department of Geography Masaryk University Brno Czech Republic
Department of Geography University of Cambridge Cambridge UK
Department of Physical Geography and Geoecology Charles University Prague Czech Republic
Department of Wood Science and Wood Technology Mendel University in Brno Brno Czech Republic
Global Change Research Institute of the Czech Academy of Sciences Brno Czech Republic
Swiss Federal Institute for Forest Snow and Landscape Research Birmensdorf Switzerland
T G Masaryk Water Research Institute Prague Czech Republic
UFZ Helmholtz Centre for Environmental Research Leipzig Germany
See more in PubMed
Alfieri L., Burek P., Feyen L., Forzieri G. Global warming increases the frequency of river floods in Europe. Hydrol. Earth Syst. Sci. 2015;19:2247–2260. doi: 10.5194/hess-19-2247-2015. DOI
Bastos A., et al. Impacts of extreme summers on European ecosystems: a comparative analysis of 2003, 2010, and 2018. Philos. Trans. R. Soc. B. 2020;375 doi: 10.1098/rtsb.2019.0507. PubMed DOI PMC
Blöschl G., et al. Changing climate both increases and decreases European river floods. Nature. 2019;573:108–111. doi: 10.1038/s41586-019-1495-6. PubMed DOI
Blöschl G., et al. Current European flood-rich period exceptional compared with past 500 years. Nature. 2020;583:560–566. doi: 10.1038/s41586-020-2478-3. PubMed DOI
Bozdogan H. Model selection and Akaike’s Information Criterion (AIC): The general theory and its analytical extensions. Psychometrika. 1987;52:345–370. doi: 10.1007/BF02294361. DOI
Brázdil R., Trnka M., Dobrovolný P., Chromá K., Hlavinka P., Žalud Z. Variability of droughts in the Czech Republic, 1881-2006. Theor. Appl. Climatol. 2009;97:297–315. doi: 10.1007/s00704-008-0065-x. DOI
Brázdil R., Máčka Z., Řezníčková L., Soukalová E., Dobrovolný P., Grygar T.M. Floods and floodplain changes of the River Morava, the Strážnické Pomoraví region (Czech Republic) over the past 130 years. Hydrol. Sci. J. 2011;56:1166–1185. doi: 10.1080/02626667.2011.608359. DOI
Brázdil R., Řezníčková L., Valášek H., Havlíček M., Dobrovolný P., Soukalová E., Řehánek T., Skokanová H. Fluctuations of floods of the river Morava (Czech Republic) in the 1691-2009 period: interactions of natural and anthropogenic factors. Hydrol. Sci. J. 2011;56:468–485. doi: 10.1080/02626667.2011.564175. DOI
Brázdil R., Bělínová M., Dobrovolný P., Mikšovský J., Pišoft P., Řezníčková L., Štěpánek P. In: Temperature and Precipitation Fluctuations in the Czech Lands During the Instrumental Period. Valášek H., Zahradníček P., editors. Masaryk University; Brno: 2012.
Brázdil R., Řezníčková L., Havlíček M., Elleder L. In: Changes in Flood Risk in Europe. 1st edition., Kundzewicz Z.W., editor. CRC Press; London, UK: 2012. Floods in the Czech Republic.
Brázdil R., Chromá K., Řezníčková L., Valášek H., Dolák L., Stachoň Z., Soukalová E., Dobrovolný P. Taxation records as a source of information for the study of historical floods in South Moravia, Czech Republic. Hydrol. Earth Syst. Sci. 2014;11:7291–7330. https://doi.org/hessd-11-7291-2014.
Brázdil R., Dobrovolný P., Trnka M., Büntgen U., Řezníčková L., Kotyza O., Valášek H., Štěpánek P. Documentary and instrumental-based drought indices for the Czech Lands back to AD 1501. Clim. Res. 2016;70:103–117. doi: 10.3354/cr01380. DOI
Brázdil R., Chromá K., Řehoř J., Zahradníček P., Dolák L., Řezníčková L., Dobrovolný P. Potential of documentary evidence to study fatalities of hydrological and meteorological events in the Czech Republic. Water. 2019;11 doi: 10.3390/w11102014. DOI
Brázdil R., Zahradníček P., Dobrovolný P., Štěpánek P., Trnka M. Observed changes in precipitation during recent warming: the Czech Republic, 1961-2019. Int. J. Climatol. 2021;41:3881–3902. doi: 10.1002/joc.7048. DOI
Brázdil R., Dobrovolný P., Mikšovský J., Pišoft P., Trnka M., Možný M., Balek J. Documentary-based climate reconstructions in the Czech Lands 1501-2020 CE and their European context. Climate. 2022;18:935–959. doi: 10.5194/cp-18-935-2022. DOI
Büntgen U., et al. Recent European drought extremes beyond Common Era background variability. Nat. Geosci. 2021;14:190–196. doi: 10.1038/s41561-021-00698-0. DOI
Büntgen U., et al. The influence of decision-making in tree-ring based climate reconstructions. Nat. Commun. 2021;12 doi: 10.1038/s41467-021-23627-6. PubMed DOI PMC
Büntgen U., Brázdil R., Dobrovolný P., Trnka M., Kyncl T. Five centuries of Southern Moravian drought variations revealed from living and historic tree rings. Theor. Appl. Climatol. 2011;105:167–180. doi: 10.1007/s00704-010-0381-9. DOI
Casty C., Raible C.C., Stocker T.F., Wanner H., Luterbacher J. A European pattern climatology 1766-2000. Clim. Dyn. 2007;29:791–805. doi: 10.1007/s00382-007-0257-6. DOI
Cook E.R. Ph.D. thesis. University of Arizona. A Time Ser. Anal. Approach Tree Ring Stand. 1985
Cook E.R., Jacoby G.C. Potomac River streamflow since 1730 as reconstructed by tree rings. J. Clim. Appl. Meteorol. 1983;22(1659):1672. doi: 10.1175/1520-0450(1983)022<1659:PRSSAR>2.0.CO;2. DOI
Cook E.R., Kairiukstis L., editors. Methods of Dendrochronology. Springer; New York: 1990. DOI
Cook E.R., Peters K. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull. 1981;41:43–53.
Cornes R.C., van der Schrier G., van den Besselaar J.M., Jones P.D. An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. – Atmos. 2018;123:9391–9409. doi: 10.1029/2017JD028200. DOI
Dai A. Drought under global warming: a review. Wiley Interdiscip. Rev.: Clim. Change. 2011;2:45–65. doi: 10.1002/wcc.81. DOI
Dang T.D., Chowdhury A.F.M.K., Galelli S. On the representation of water reservoir storage and operations in large-scale hydrological models: Implications on model parameterization and climate change impact assessments. Hydrol. Earth Syst. Sci. 2020;24:397–416. doi: 10.5194/hess-24-397-2020. DOI
Dang T.D., Vu D.T., Chowdhury A.F.M.K., Galelli S. A software package for the representation and optimization of water reservoir operations in the VIC hydrologic model. Environ. Model. Softw. 2020;126 doi: 10.1016/j.envsoft.2020.104673. DOI
Dietze M., Ozturk U. A flood of disaster response challenges. Science. 2021;373:1317–1318. doi: 10.1126/science.abm0617. PubMed DOI
Dobrovolný P., Moberg A., Brázdil R., Pfister C., Glaser R., Wilson R., van Engelen A., Limanówka D., Kiss A., Halíčková M., Macková J., Riemann D., Luterbacher J., Böhm R. Monthly and seasonal temperature reconstructions for Central Europe derived from documentary evidence and instrumental records since AD 1500. Clim. Change. 2010;101:69–107. doi: 10.1007/s10584-009-9724-x. DOI
Dobrovolný P., Brázdil R., Trnka M., Kotyza O., Valášek H. Precipitation reconstruction for the Czech Lands, AD 1501–2010. Int. J. Climatol. 2015;35:1–14. doi: 10.1002/joc.3957. DOI
Eckhardt K. A comparison of baseflow indices, which were calculated with seven different baseflow separation methods. J. Hydrol. 2008;352:168–173. doi: 10.1016/j.jhydrol.2008.01.005. DOI
Esper J., Frank D.C., Wilson R.J.S., Briffa K.R. Effect of scaling and regression on reconstructed temperature amplitude for the past millennium. Geophys. Res. Lett. 2005;32 doi: 10.1029/2004GL021236. DOI
Fiala T., Ouarda T.B.M.J., Hladný J. Evolution of low flows in the Czech Republic. J. Hydrol. 2010;393:206–218. doi: 10.1016/j.jhydrol.2010.08.018. DOI
Fischer M., et al. Attributing the drivers of runoff decline in the Thaya river basin. J. Hydrol.: Reg. Stud. 2023;48 doi: 10.1016/j.ejrh.2023.101436. DOI
Fisher R.A. On the ‘probable error’ coefficient of correlation deduced from a small sample. Metron. 1921;1:3–32.
Freund M.B., Helle G., Balting D.F., Ballis N., Schleser G.H., Cubasch U. European tree-ring isotopes indicate unusual recent hydroclimate. Commun. Earth Environ. 2023;4:26. doi: 10.1038/s43247-022-00648-7. DOI
Gangopadhyay S., McCabe G.J., Woodhouse C.A. Beyond annual streamflow reconstructions for the Upper Colorado River basin: a paleo-water-balance approach. Water Resour. Res. 2015;51:9763–9774. doi: 10.1002/2015WR017283. DOI
García-Herrera R., Garrido-Perez J.M., Barriopedro D., Ordóñez C., Vicente-Serrano S.M., Nieto R., Gimeno L., Sorí R., Yiou P. The European 2016/17 drought. J. Clim. 2019;32:3169–3187. doi: 10.1175/JCLI-D-18-0331.1. DOI
Glaser, et al. The variability of European floods since AD 1500. Clim. Change. 2010;101:235–256. doi: 10.1007/s10584-010-9816-7. DOI
Gonzales A.L., Nonner J., Heijkers J., Uhlenbrook S. Comparison of different base flow separation methods in a lowland catchment. Hydrol. Earth Syst. Sci. 2009;13:2055–2068. doi: 10.5194/hess-13-2055-2009. DOI
Grygar T.M., Nováková T., Mihaljevič M., Strnad L., Světlík I., Koptíková L., Lisá L., Brázdil R., Máčka Z., Stachoň Z., Svitavská-Svobodová H., Wray D.S. Surprisingly small increase of the sedimentation rate in the floodplain of Morava River in the Strážnice area, Czech Republic, in the last 1300 years. CATENA. 2011;86:192–207. doi: 10.1016/j.catena.2011.04.003. DOI
Hamel K.H., Rao A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998;204:182–196. doi: 10.1016/S0022-1694(97)00125-X. DOI
Hanel M., Vizina A., Máca P., Pavlásek J. A multi-model assessment of climatic change impact on hydrological regime in the Czech Republic. J. Hydrol. Hydromech. 2012;60:152–161. doi: 10.2478/v10098-012-0013-4. DOI
Hanel M., Pavláskova A., Kyselý J. Trends in characteristics of sub-daily heavy precipitation and rainfall erosivity in the Czech Republic. Int. J. Climatol. 2016;36:1833–1845. doi: 10.1002/joc.4463. DOI
Hanel M., Rakovec O., Markonis Y., Máca P., Samaniego L., Kyselý J., Kumar R. Revisiting the recent European droughts from a long-term perspective. Sci. Rep. 2018;8 doi: 10.1038/s41598-018-27464-4. PubMed DOI PMC
Harris I., Osborn T.J., Jones P., Lister D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data. 2020;7 doi: 10.1038/s41597-020-0453-3. PubMed DOI PMC
Ionita M., Nagavciuc V. Changes in drought features at the European level over the last 120 years. Nat. Hazards Earth Syst. Sci. 2021;21:1685–1701. doi: 10.5194/nhess-21-1685-2021. DOI
IPCC . In: Climatic Change 2021: The Physical Science Basis. Contributions of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Masson-Delmotte V., et al., editors. Cambridge University Press; Cambridge, UK: 2021. DOI
Jolliffe I.T. Springer; New York, NY: 2002. Principal Component Analysis.
Kadlec J., Grygar T., Svétlík I., Ettler V., Mihaljevič M., Diehl J.F., Beske-Diehl S., Svitavská-Svobodová H. Morava River floodplain development during the last millennium, Strážnické Pomoraví, Czech Republic. Holocene. 2009;19:499–509. doi: 10.1177/0959683608101398. DOI
Karanitsch-Ackerl S., Mayer K., Gauster T., Laaha G., Holawe F., Wimmer R., Grabner M. A 400-year reconstruction of spring-summer precipitation and summer low flow from regional tree-ring chronologies in North-Eastern Austria. J. Hydrol. 2019;577 doi: 10.1016/j.jhydrol.2019.123986. DOI
Kašpárek L., Kožín R. Changes in precipitation and runoff in river basins in the Czech Republic during the period of intense warming. Vodohospodářské Tech. -Èkon. Inf. 2022;64:17–26. doi: 10.46555/VTEI.2022.01.002. DOI
Kendall M.G. Griffin Press; London, UK: 1975. Rank Correlation Methods.
Khan N., Nguyen H.T.T., Galelli S., Cherubini P. Increasing drought risks over the past four centuries amidst projected flood intensification in the Kabul River basin (Afghanistan and Pakistan) – evidence from tree rings. Geophys. Res. Lett. 2022;49 doi: 10.1029/2022GL100703. DOI
Kohler M.A. On the use of double-mass analysis for testing the consistency of meteorological records and for making required adjustments. Bull. Am. Meteorol. Soc. 1949;30:188–189. doi: 10.1175/1520-0477-30.5.188. DOI
Kotz S., Nadarajah S. World Scientific; Singapore: 2000. Extreme Value Distributions – Theory and Applications. DOI
Koutsoyiannis D., Montanari A. Statistical analysis of hydroclimatic time series: uncertainty and insight. Water Resour. Res. 2007;43 doi: 10.1029/2006WR005592. DOI
Kumar R., Samaniego L., Attinger S. Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations. Water Resour. Res. 2013;49 doi: 10.1029/2012WR012195. DOI
Kundzewicz Z.W., Krysanov V., Dankers R., Hirabyashi Y., Kanae S., Hattermann F.F., Huang S., Milly P.C.D., Stoffel M., Driessen P.P.J., Matczak P., Quevauviller P., Schellnhuber H.-J. Differences in flood hazard projections in Europe – their causes and consequences for decision making. Hydrol. Sci. J. 2017;62:1–14. doi: 10.1080/02626667.2016.1241398. DOI
Kyselý J., Picek J. Regional growth curves and improved design value estimates of extreme precipitation events in the Czech Republic. Clim. Res. 2007;33:243–255. doi: 10.3354/cr033243. DOI
Ledvinka O. Evolution of low flows in Czechia revisited. Proc. Int. Assoc. Hydrol. Serv. 2015;369:87–95. doi: 10.5194/piahs-369-87-2015. DOI
Lorenz D. US Geological Survey; Washington, DC: 2017. DVStats: Functions to manipulate daily-values data (R-package)
Mašek J., Tumajer J., Rydval M., Lange J., Treml V. Age and size outperform topographic effects on growth-climate responses. Dendrochronologia. 2021;68 doi: 10.1016/j.dendro.2021.125845. DOI
Matějíček, J., & Hladný, J. (1999): Povodňová katastrofa 20. století na území České republiky (Flood Disaster of the 20th Century on the Territory of the Czech Republic). Ministerstvo životního prostředí, Prague, Czech Republic.
Maxwell J.T., et al. 1,100-year reconstruction of baseflow for the Santee River, South Carolina, USA reveals connection to the North Atlantic subtropical high. Geophys. Res. Lett. 2022;49 doi: 10.1029/2022GL100742. DOI
Maxwell R.S., Hessl A.E., Cook E.R., Pederson N. A multispecies tree ring reconstruction of Potomac River streamflow (950-2001) Water Resour. Res. 2011;47 doi: 10.1029/2010WR010019. DOI
Maxwell R.S., Harley G.L., Maxwell J.T., Rayback S.A., Pederson N., Cook E.R., Barclay D.J., Li W., Rayburn J.A. An interbasin comparison of tree-ring reconstructed streamflow in the eastern United States. Hydrol. Process. 2017;31:2381–2394. doi: 10.1002/hyp.11188. DOI
Meko D.M., Woodhouse C.A., Baisan C.A., Knight T., Lucas J.J., Hughes M.K., Salzer M.W. Medieval drought in the Upper Colorado River basin. Geophys. Res. Lett. 2007;34 doi: 10.1029/2007GL029988. DOI
Moravec V., Markonis Y., Rakovec O., Kumar R., Hanel M. A 250-year European drought inventory derived from ensemble hydrologic modeling. Geophys. Res. Lett. 2019;46:5909–5917. doi: 10.1029/2019GL082783. DOI
Možný M., Trnka M., Vlach V., Vizina A., Potopová V., Zahradníček P., Štěpánek P., Hájková L., Staponites L., Žalud Z. Past (1971-2018) and future (2021-2100) pan evaporation rates in the Czech Republic. J. Hydrol. 2020;590 doi: 10.1016/j.jhydrol.2020.125390. DOI
Mudelsee M., Börnge N M., Tetzlaff G., Grünewald U. Extreme floods in central Europe over the past 500 years: role of cyclone pathway “Zugstrasse Vb”. J. Geophys. Res.: Atmospheres. 2004;109:D23. doi: 10.1029/2004JD005034. DOI
Nagavciuc V., Roibu C.-C., Mursa A., Știrbu M.-I., Popa I., Ionita M. The first tree-ring reconstruction of streamflow variability over the last ∼250 years in the Lower Danube. J. Hydrol. 2023;617 doi: 10.1016/j.jhydrol.2023.129150. DOI
Nguyen H.T.T., Galelli S., Xu C., Buckley B.M. Multi-proxy, multi-seasonal streamflow reconstruction with mass balance adjustment. Water Resour. Res. 2021;57 doi: 10.1029/2020WR029394. DOI
Nguyen H.T.T., Galelli S., Xu C., Buckley B.M. Droughts, pluvials, and wet season timing across the Chao Phraya River basin: a 254-year monthly reconstruction from tree ring width and δ18O. Geophys. Res. Lett. 2022;49 doi: 10.1029/2022GL100442. DOI
Olive D.J. Prediction intervals for regression models. Comput. Stat. Data Anal. 2007;51:3115–3122. doi: 10.1016/j.csda.2006.02.006. DOI
Partington D., Brunner P., Simmons C.T., Werner A.D., Therrien R., Maier H.R., Dandy G.C. Evaluation of outputs from automated baseflow separation methods against simulated baseflow from a physically based, surface water-groundwater flow model. J. Hydrol. 2012;458–59:28–39. doi: 10.1016/j.jhydrol.2012.06.029. DOI
Peña-Angulo D., Vicente-Serrano S.M., Domínguez-Castro F., Lorenzo-Lacruz J., Murphy C., Hannaford J., Allan R.P., Tramblay Y., Reig-Gracia F., El Kenawy A. The complex and spatially diverse patterns of hydrological droughts across Europe. Water Resour. Res. 2022;58 doi: 10.1029/2022WR031976. DOI
Pettyjohn W.A., Henning R. .S. Department of the Interior,; Washington, DC. U: 1979. Preliminary estimate of ground-water recharge rates, related streamflow and water quality in Ohio.
Potopová V., Trnka M., Vizina A., Semerádová D., Balek J., Chawdhery M.R.A., Musiolková M., Pavlík P., Možný M., Štěpánek P., Clothier B. Projection of 21st century irrigation water requirements for sensitive agricultural crop commodities across the Czech Republic. Agric. Water Manag. 2022;262 doi: 10.1016/j.agwat.2021.107337. DOI
Rakovec O., Samaniego L., Hari V., Markonis Y., Moravec V., Thober S., Hanel M., Kumar R. The 2018-2020 multi-year drought sets a new benchmark in Europe. Earth’s Future. 2022;10 doi: 10.1029/2021EF002394. DOI
Robeson S.M., Maxwell J.T., Ficklin D.L. Bias correction of paleoclimatic reconstructions: a new look at 1,200+ years of Upper Colorado River flow. Geophys. Res. Lett. 2020;47 doi: 10.1029/2019GL086689. DOI
Robinson A., Lehmann J., Barriopedro D., Rahmstorf S., Coumou D. Increasing heat and rainfall extremes now far outside the historical climate. npj Clim. Atmos. Sci. 2021;4 doi: 10.1038/s41612-021-00202-w. DOI
Ruosteenoja K., Markkanen T., Venäläinen A., Räisänen P., Peltola H. Seasonal soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st century. Clim. Dyn. 2018;50:1177–1192. doi: 10.1007/s00382-017-3671-4. DOI
Saito L., Biondi F., Salas J.D., Panorska A.K., Kozubowski T.J. A watershed modeling approach to streamflow reconstruction from tree-ring records. Environ. Res. Lett. 2008;3 doi: 10.1088/1748-9326/3/2/024006. DOI
Samaniego L., Kumar R., Attinger S. Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour. Res. 2010;46 doi: 10.1029/2008WR007327. DOI
Sloto R.A., Crouse M.Y. HYSEP: a computer program for streamflow hydrograph separation and analysis. USGS Water Resour. Investig. 1996:46. Rep. 96-4040.
St. George S., Hefner A., Avila J. Paleofloods stage a comeback. Nat. Geosci. 2020;13:766–768. doi: 10.1038/s41561-020-00664-2. DOI
Stagge J.H., Rosenberg D.E., DeRose R.J., Rittenour T.M. Monthly paleostreamflow reconstruction from annual tree-ring chronologies. J. Hydrol. 2018;557:791–804. doi: 10.1016/j.jhydrol.2017.12.057. DOI
Stahl K., Hisdal H., Hannaford J., Tallaksen L.M., van Lanen H.A.J., Sauquet E., Demuth S., Fendekova M., Jódar J. Streamflow trends in Europe: evidence from a dataset of near-natural catchments. Hydrol. Earth Syst. Sci. 2010;14:2367–2382. doi: 10.5194/hess-14-2367-2010. DOI
Stoelzle M., Scheutz T., Weiler M., Stahl K., Tallaksen L.M. Beyond binary baseflow separation: a delayed-flow index for multiple streamflow contributions. Hydrol. Earth Syst. Sci. 2020;24:849–867. doi: 10.5194/hess-24-849-2020. DOI
Tarasova L., et al. Shifts in flood generation processes exacerbate regional flood anomalies in Europe. Commun. Earth Environ. 2023;4 doi: 10.1038/s43247-023-00714-8. PubMed DOI PMC
Tolson B.A., Shoemaker C.A. Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resour. Res. 2007;43 doi: 10.1029/2005WR004723. DOI
Torbenson M.C.A., et al. Central European agroclimate over the past 2,000 years. J. Clim. 2023 doi: 10.1175/JCLI-D-22-0831.1. DOI
Torbenson M.C.A., Stagge J.H. Informing seasonal proxy-based flow reconstructions using baseflow separation: an example from the Potomac River, United States. Water Resour. Res. 2021;57 doi: 10.1029/2020WR027706. DOI
Torbenson M.C.A., Stahle D.W. The relationship between cool and warm season moisture over the central United States. J. Clim. 2018;31:7909–7924. doi: 10.1175/JCLI-D-17-0593.1. DOI
Torbenson M.C.A., Stahle D.W., Howard I.M., Blackstock J.M., Cleaveland M.K., Stagge J.H. Pre-instrumental perspectives on Arkansas River cross-watershed flow variability. J. Am. Water Resour. Assoc. 2023;59:1–15. doi: 10.1111/1752-1688.13068. DOI
Treml V., Mašek J., Tumajer J., Rydval M., Čada V., Ledvinka O., Svoboda M. Trends in climatically driven extreme growth reductions of Picea abies and Pinus sylvestris in Central Europe. Glob. Change Biol. 2022;28:557–570. doi: 10.1111/gcb.15922. PubMed DOI
Trnka M., Brázdil R., Možný M., Štěpánek P., Dobrovolný P., Zahradníček P., Balek J., Semerádová D., Dubrovský M., Hlavinka P., Eitzinger J., Wardlow B., Svoboda M., Hayes M., Žalud Z. Soil moisture trends in the Czech Republic between 1961 and 2012. Int. J. Climatol. 2015;35:3733–3747. doi: 10.1002/joc.4242. DOI
Tumajer J., Treml V. Response of floodplain pedunculate oak (Quercus robur L.) tree-ring width and vessel anatomy to climatic trends and extreme hydroclimatic events. For. Ecol. Manag. 2016;379:185–194. doi: 10.1016/j.foreco.2016.08.013. DOI
Urban O., Ač A., Rybníček M., Kolář T., Pernicová N., Koňasová E., Trnka M., Büntgen U. The dendroclimatic value of oak stable isotopes. Dendrochronologia. 2021;65 doi: 10.1016/j.dendro.2020.125804. DOI
Zahradníček P., Brázdil R., Štěpánek P., Trnka M. Reflections of global warming in trends of temperature characteristics in the Czech Republic, 1961-2019. Int. J. Climatol. 2021;41:1211–1229. doi: 10.1002/joc.6791. DOI
Zhao S., Pederson N., D’Orangeville, HilleRisLambers J., Boose E., Penone C., Bauer B., Jiang J., Manzanedo R.D. The International Tree-Ring Data Bank (ITRDB) revisited: data availability and global ecological representativity. J. Biogeogr. 2019;46:355–368. doi: 10.1111/jbi.13488. DOI