Shifts in flood generation processes exacerbate regional flood anomalies in Europe
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media print-electronic
Document type Journal Article
PubMed
38665201
PubMed Central
PMC11041756
DOI
10.1038/s43247-023-00714-8
PII: 714
Knihovny.cz E-resources
- Keywords
- Hydrology, Natural hazards,
- Publication type
- Journal Article MeSH
Anomalies in the frequency of river floods, i.e., flood-rich or -poor periods, cause biases in flood risk estimates and thus make climate adaptation measures less efficient. While observations have recently confirmed the presence of flood anomalies in Europe, their exact causes are not clear. Here we analyse streamflow and climate observations during 1960-2010 to show that shifts in flood generation processes contribute more to the occurrence of regional flood anomalies than changes in extreme rainfall. A shift from rain on dry soil to rain on wet soil events by 5% increased the frequency of flood-rich periods in the Atlantic region, and an opposite shift in the Mediterranean region increased the frequency of flood-poor periods, but will likely make singular extreme floods occur more often. Flood anomalies driven by changing flood generation processes in Europe may further intensify in a warming climate and should be considered in flood estimation and management.
Department Catchment Hydrology Helmholtz Centre for Environmental Research UFZ Halle Germany
Institute of Geosciences and Geography Martin Luther University Halle Wittenberg Halle Germany
See more in PubMed
Merz B, Nguyen VD, Vorogushyn S. Temporal clustering of floods in Germany: Do flood-rich and flood-poor periods exist? J. Hydrol. 2016;541:824–838. doi: 10.1016/j.jhydrol.2016.07.041. DOI
Liu J, Zhang Y. Multi-temporal clustering of continental floods and associated atmospheric circulations. J. Hydrol. 2017;555:744–759. doi: 10.1016/j.jhydrol.2017.10.072. DOI
Lun D, Fischer S, Viglione A, Blöschl G. Detecting flood-rich and flood-poor periods in annual peak discharges across europe. Water Resour. Res. 2020;56:e2019WR026575. doi: 10.1029/2019WR026575. PubMed DOI PMC
Blöschl G, et al. Current European flood-rich period exceptional compared with past 500 years. Nature. 2020;583:560–566. doi: 10.1038/s41586-020-2478-3. PubMed DOI
Rao MP, et al. Seven centuries of reconstructed Brahmaputra River discharge demonstrate underestimated high discharge and flood hazard frequency. Nat. Commun. 2020;11:1–10. doi: 10.1038/s41467-020-19795-6. PubMed DOI PMC
Serinaldi F, Kilsby CG. Stationarity is undead: uncertainty dominates the distribution of extremes. Adv. Water Resour. 2015;77:17–36. doi: 10.1016/j.advwatres.2014.12.013. DOI
Volpi E, Fiori A, Grimaldi S, Lombardo F, Koutsoyiannis D. One hundred years of return period: Strengths and limitations. Water Resour. Res. 2015;51:8570–8585. doi: 10.1002/2015WR017820. DOI
Merz B, et al. Floods and climate: emerging perspectives for flood risk assessment and management. Nat. Hazards Earth Syst. Sci. 2014;14:1921–1942. doi: 10.5194/nhess-14-1921-2014. DOI
Kreibich H, et al. Adaptation to flood risk: results of international paired flood event studies. Earth’s Future. 2017;5:953–965. doi: 10.1002/2017EF000606. DOI
Fanta V, Šálek M, Sklenicka P. How long do floods throughout the millennium remain in the collective memory. Nat. Commun. 2019;10:1–9. doi: 10.1038/s41467-019-09102-3. PubMed DOI PMC
Merz B, et al. Causes, impacts and patterns of disastrous river floods. Nat. Rev. Earth Environ. 2021;2:592–609. doi: 10.1038/s43017-021-00195-3. DOI
Hall J, et al. Understanding flood regime changes in Europe: a state-of-the-art assessment. Hydrol. Earth Syst. Sci. 2014;18:2735–2772. doi: 10.5194/hess-18-2735-2014. DOI
Markonis Y, Hanel M, Máca P, Kyselý J, Cook ER. Persistent multi-scale fluctuations shift European hydroclimate to its millennial boundaries. Nat. Commun. 2018;9:1–12. doi: 10.1038/s41467-018-04207-7. PubMed DOI PMC
Yang Z, Villarini G. Examining the capability of reanalyses in capturing the temporal clustering of heavy precipitation across Europe. Clim. Dyn. 2019;53:1845–1857. doi: 10.1007/s00382-019-04742-z. DOI
Barton, Y. et al. On the temporal clustering of European extreme precipitation events and its relationship to persistent and transient large-scale atmospheric drivers. Weather Clim. Extremes10.1016/j.wace.2022.100518 (2022).
Brönnimann S, et al. Influence of warming and atmospheric circulation changes on multidecadal European flood variability. Clim. Past. 2022;18:919–933. doi: 10.5194/cp-18-919-2022. DOI
Palmer TN. Climate extremes and the role of dynamics. Proc. Natl Acad. Sci. USA. 2013;110:5281–5282. doi: 10.1073/pnas.1303295110. PubMed DOI PMC
Pfahl S, O’Gorman PA, Fischer EM. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Change. 2017;7:423–427. doi: 10.1038/nclimate3287. DOI
Mallakpour I, Villarini G. The changing nature of flooding across the central United States. Nat. Clim. Change. 2015;5:250–254. doi: 10.1038/nclimate2516. DOI
IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., et al (eds.)]. (Cambridge University Press, 2021).
Blöschl G, et al. Changing climate shifts timing of European floods. Science. 2017;357:588–590. doi: 10.1126/science.aan2506. PubMed DOI
Musselman KN, et al. Projected increases and shifts in rain-on-snow flood risk over western North America. Nat. Clim. Change. 2018;8:808–812. doi: 10.1038/s41558-018-0236-4. DOI
Sikorska-Senoner, A. E. & Seibert, J. Flood-type trend analysis for alpine catchments. Hydrol. Sci. J.10.1080/02626667.2020.1749761 (2020).
Chegwidden, O., Rupp, D. E. & Nijssen, B. Climate change alters flood magnitudes and mechanisms in climatically-diverse headwaters across the northwestern United States. Environ. Res. Lett.10.1088/1748-9326/ab986f (2020).
Kemter M, Merz B, Marwan N, Vorogushyn S, Blöschl G. Joint trends in flood magnitudes and spatial extents across Europe. Geophys. Res. Lett. 2020;47:1–8. doi: 10.1029/2020GL087464. PubMed DOI PMC
Brunner MI, Gilleland E, Wood A, Swain DL, Clark M. Spatial dependence of floods shaped by spatiotemporal variations in meteorological and land‐surface processes. Geophys. Res. Lett. 2020;2019:1–13.
Brunner MI, et al. An extremeness threshold determines the regional response of floods to changes in rainfall extremes. Commun. Earth Environ. 2021;2:1–11. doi: 10.1038/s43247-021-00248-x. DOI
Milly PCD, Wetherald RT, Dunne KA, Delworth TL. Increasing risk of great floods in a changing climate. Nature. 2002;415:514–517. doi: 10.1038/415514a. PubMed DOI
Hirabayashi Y, et al. Global flood risk under climate change. Nat. Clim. Change. 2013;3:816–821. doi: 10.1038/nclimate1911. DOI
Alfieri L, et al. Global projections of river flood risk in a warmer world. Earth’s Future. 2017;5:171–182. doi: 10.1002/2016EF000485. DOI
Thober, S. et al. Multi-model ensemble projections of European river floods and high flows at 1.5, 2, and 3 degrees global warming. Environ. Res. Lett.10.1088/1748-9326/aa9e35 (2018).
Blöschl G, et al. Changing climate both increases and decreases European river floods. Nature. 2019;573:108–111. doi: 10.1038/s41586-019-1495-6. PubMed DOI
Tarasova L, et al. Causative classification of river flood events. Wiley Interdiscip. Rev.: Water. 2019;6:e1353. PubMed PMC
Tarasova L, et al. A process‐based framework to characterize and classify runoff events: the event typology of Germany. Water Resour. Res. 2020;56:1–24. doi: 10.1029/2019WR026951. DOI
Sen PK. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 1968;63:1379–1389. doi: 10.1080/01621459.1968.10480934. DOI
Kendall, M.G. Rank Correlation Measures (Charles Griffin, 1975).
Nelder JA, Wedderburn RWM. Generalized linear models. J. R. Stat. Soc., Ser. A (General) 1972;135:370–384. doi: 10.2307/2344614. DOI
Azen R, Budescu DV. The dominance analysis approach for comparing predictors in multiple regression. Psychol. Methods. 2003;8:129–148. doi: 10.1037/1082-989X.8.2.129. PubMed DOI
Vormoor K, Lawrence D, Schlichting L, Wilson D, Wong WK. Evidence for changes in the magnitude and frequency of observed rainfall vs. snowmelt driven floods in Norway. J. Hydrol. 2016;538:33–48. doi: 10.1016/j.jhydrol.2016.03.066. DOI
Räisänen J. Snow conditions in northern Europe: the dynamics of interannual variability versus projected long-term change. Cryosphere. 2021;15:1677–1696. doi: 10.5194/tc-15-1677-2021. DOI
Diffenbaugh NS, Scherer M, Ashfaq M. Response of snow-dependent hydrologic extremes to continued global warming. Nat. Clim. Change. 2013;3:379–384. doi: 10.1038/nclimate1732. PubMed DOI PMC
López-Moreno, J. I. et al. Different sensitivities of snowpacks to warming in Mediterranean climate mountain areas. Environ. Res. Lett.10.1088/1748-9326/aa70cb (2017).
Teuling AJ, et al. M. Climate change, reforestation/afforestation, and urbanization impacts on evapotranspiration and streamflow in Europe. Hydrolo. Earth Syst. Sci. 2019;23:3631–3652. doi: 10.5194/hess-23-3631-2019. DOI
Berghuijs WR, Harrigan S, Molnar P, Slater LJ, Kirchner JW. The relative importance of different flood-generating mechanisms across europe. Water Resour. Res. 2019;55:4582–4593. doi: 10.1029/2019WR024841. DOI
Bertola M, et al. Do small and large floods have the same drivers of change? A regional attribution analysis in Europe. Hydrol. Earth Syst. Sci. 2021;25:1347–1364. doi: 10.5194/hess-25-1347-2021. DOI
Giorgi F, Lionello P. Climate change projections for the Mediterranean region. Glob. Planet. Change. 2008;63:90–104. doi: 10.1016/j.gloplacha.2007.09.005. DOI
Bertola M, Viglione A, Lun D, Hall J, Blöschl G. Flood trends in Europe: are changes in small and big floods different. Hydrol. Earth Syst. Sci. 2020;24:1805–1822. doi: 10.5194/hess-24-1805-2020. DOI
Wasko C, Nathan R, Stein L, O’Shea D. Evidence of shorter more extreme rainfalls and increased flood variability under climate change. J. Hydrol. 2021;603:126994. doi: 10.1016/j.jhydrol.2021.126994. DOI
Haslinger K, Hofstätter M, Schöner W, Blöschl G. Changing summer precipitation variability in the Alpine region: on the role of scale dependent atmospheric drivers. Clim. Dyn. 2021;57:1009–1021. doi: 10.1007/s00382-021-05753-5. PubMed DOI PMC
Kendon EJ, et al. A. Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Clim. Change. 2014;4:570–576. doi: 10.1038/nclimate2258. DOI
Stein, L., Pianosi, F. & Woods, R. Event-based classification for global study of river flood generating processes. Hydrol. Process.10.1002/hyp.13678 (2020).
Van den Besselaar EJM, Klein Tank AMG, Buishand TA. Trends in European precipitation extremes over 1951-2010. Int. J. Climatol. 2013;33:2682–2689.
Moreno-Chamarro, E., Caron, L. P., Ortega, P., Loosveldt Tomas, S. & Roberts, M. J. Can we trust CMIP5/6 future projections of European winter precipitation? Environ. Res. Lett.10.1088/1748-9326/abf28a (2021).
Jongman B, et al. Increasing stress on disaster-risk finance due to large floods. Nat. Clim. Change. 2014;4:264–268. doi: 10.1038/nclimate2124. DOI
Zscheischler J, et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 2020;1:333–347. doi: 10.1038/s43017-020-0060-z. DOI
Samaniego L, Kumar R, Attinger S. Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour. Res. 2010;46:1–25. doi: 10.1029/2008WR007327. DOI
Kumar R, Samaniego L, Attinger S. Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations. Water Resour. Res. 2013;49:360–379. doi: 10.1029/2012WR012195. DOI
Tarasova L, Basso S, Zink M, Merz R. Exploring controls on rainfall-runoff events: 1. Time series-based event separation and temporal dynamics of event runoff response in Germany. Water Resour. Res. 2018;54:7711–7732. doi: 10.1029/2018WR022587. DOI
Haylock, M. R. et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006. J. Geophys. Res. Atmos.10.1029/2008JD010201 (2008).
Samaniego L, et al. Toward seamless hydrologic predictions across spatial scales. Hydrol. Earth Syst. Sci. 2017;21:4323–4346. doi: 10.5194/hess-21-4323-2017. DOI
Samaniego L, et al. Hydrological forecasts and projections for improved decision-making in the water sector in Europe. Bull. Am. Meteorol. Soc. 2019;100:2451–2471. doi: 10.1175/BAMS-D-17-0274.1. DOI
Thober S, et al. The multiscale routing model mRM v1.0: simple river routing at resolutions from 1 to 50 km. Geosci. Model Dev. 2019;12:2501–2521. doi: 10.5194/gmd-12-2501-2019. DOI
Helsel, D. R., Hirsch, R. M., Ryberg, K. R., Archfield, S. A. & Gilroy, E. J. Statistical Methods in Water Resources Techniques and Methods 4 – A3. USGS Techniques and Methods, 458; https://pubs.er.usgs.gov/publication/tm4A3 (2020).
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995;57:289–300.
Glaz, J., Naus, J. & Wallenstein, S. Scan Statistics (Springer, 2001).
Glaz J, Naus JI. Tight bounds and approximations for scan statistic probabilities for discrete data. Ann. Appl. Probab. 1991;1:306–318. doi: 10.1214/aoap/1177005940. DOI
Tarone RE. A modified bonferroni method for discrete. Data. Biometrics. 1990;46:515–522. doi: 10.2307/2531456. PubMed DOI
Serinaldi, F. & Kilsby, C. G. Unsurprising surprises: the frequency of record-breaking and overthreshold hydrological extremes under spatial and temporal dependence. Water Resour. Res.10.1029/2018WR023055 (2018).
McFadden, D. Frontiers in Econometrics (eds Zarembka, P.) (Academic Press, 1974)
Lave CA. The demand for urban mass transportation. Rev. Econ. Stat. 1970;37:320–323. doi: 10.2307/1926301. DOI
Efron B. Regression and ANOVA with zero-one data: measures of residual variation. J. Am. Stat. Assoc. 1978;73:113–121. doi: 10.1080/01621459.1978.10480013. DOI
Hagle TM, Mitchell GE. Goodness-of-fit measures for probit and logit. Am. J. Polit. Sci. 1992;36:762–784. doi: 10.2307/2111590. DOI
Hensher, D. A., Stopher, P.R. Behavioural Travel Modelling (Croom Helm, 1979).
Akaike H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 1974;19:716–723. doi: 10.1109/TAC.1974.1100705. DOI
Lun D, et al. Characteristics and process controls of statistical flood moments in Europe – a data-based analysis. Hydrol. Earth Syst. Sci. 2021;25:5535–5560. doi: 10.5194/hess-25-5535-2021. DOI
Burnham, K. P. & Anderson, D. R. Model Selection And Multimodel Inference (Springer, 2002).