Persistent multi-scale fluctuations shift European hydroclimate to its millennial boundaries
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
29720588
PubMed Central
PMC5932079
DOI
10.1038/s41467-018-04207-7
PII: 10.1038/s41467-018-04207-7
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
In recent years, there has been growing concern about the effect of global warming on water resources, especially at regional and continental scales. The last IPCC report on extremes states that there is medium confidence about an increase on European drought frequency during twentieth century. Here we use the Old World Drought Atlas palaeoclimatic reconstruction to show that when Europe's hydroclimate is examined under a millennial, multi-scale perspective, a significant decrease in dryness can be observed since 1920 over most of central and northern Europe. On the contrary, in the south, drying conditions have prevailed, creating an intense north-to-south dipole. In both cases, hydroclimatic conditions have shifted to, and in some regions exceeded, their millennial boundaries, remaining at these extreme levels for the longest period of the 1000-year-long record.
See more in PubMed
Seneviratne, S. I. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds C.B., Field, et al.) 109–230 (Cambridge University Press, Cambridge, UK, and New York, NY, USA, 2012).
Trenberth KE, et al. Global warming and changes in drought. Nat. Clim. Change. 2014;4:17. doi: 10.1038/nclimate2067. DOI
Ljungqvist FC, et al. Northern Hemisphere hydroclimate variability over the past twelve centuries. Nature. 2016;532:94–98. doi: 10.1038/nature17418. PubMed DOI
Van Loon AF, et al. Drought in a human-modified world: reframing drought definitions, understanding, and analysis approaches. Hydrol. Earth Syst. Sci. 2016;20:3631–3650. doi: 10.5194/hess-20-3631-2016. DOI
Hartmann, D. L. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds T. F, Stocker et al.) Ch. 2 (Cambridge University Press, Cambridge, UK and New York, USA, 2013). .
Collins, M. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds T. F, Stocker et al.) Ch. 12 (Cambridge University Press, Cambridge, UK and New York, USA, 2013)..
Orlowsky B, Seneviratne SI. Elusive drought: uncertainty in observed trends and short- and long-term CMIP5 projections. Hydrol. Earth Syst. Sci. 2013;17:1765–1781. doi: 10.5194/hess-17-1765-2013. DOI
Dai A, Zhao T. Uncertainties in historical changes and future projections of drought. Part I: estimates of historical drought changes. Clim. Change. 2017;144:519–533. doi: 10.1007/s10584-016-1705-2. DOI
Coats S, Smerdon JE, Seager R, Cook BI, González-Rouco JF. Megadroughts in Southwestern North America in ECHO-G millennial simulations and their comparison to proxy drought reconstructions. J. Clim. 2013;26:7635–7649. doi: 10.1175/JCLI-D-12-00603.1. DOI
Sheffield J, Wood EF, Roderick ML. Little change in global drought over the past 60 years. Nature. 2012;491:435–438. doi: 10.1038/nature11575. PubMed DOI
Dai A. Increasing drought under global warming in observations and models. Nat. Clim. Change. 2013;3:52–58. doi: 10.1038/nclimate1633. DOI
Held IM, Soden BJ. Robust responses of the hydrological cycle to global warming. J. Clim. 2006;19:5686–5699. doi: 10.1175/JCLI3990.1. DOI
Allan RP. Climate change: dichotomy of drought and deluge. Nat. Geosci. 2014;7:700–701. doi: 10.1038/ngeo2243. DOI
Greve P, et al. Global assessment of trends in wetting and drying over land. Nat. Geosci. 2014;7:716–721. doi: 10.1038/ngeo2247. DOI
Byrne MP, O’Gorman PA. The response of precipitation minus evapotranspiration to climate warming: why the “wet-get-wetter, dry-get-drier” scaling does not hold over land. J. Clim. 2015;28:8078–8092. doi: 10.1175/JCLI-D-15-0369.1. DOI
Cook ER, et al. Old World megadroughts and pluvials during the Common Era. Sci. Adv. 2015;1:e1500561–e1500561. doi: 10.1126/sciadv.1500561. PubMed DOI PMC
Cook ER, Woodhouse CA, Eakin CM, Meko DM, Stahle DW. Long-term aridity changes in the western United States. Science. 2004;306:1015–1018. doi: 10.1126/science.1102586. PubMed DOI
Cook ER, et al. Asian monsoon failure and megadrought during the last millennium. Science. 2010;328:486–489. doi: 10.1126/science.1185188. PubMed DOI
Sheffield J, Wood EF. Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic cycle. J. Clim. 2008;21:432–458. doi: 10.1175/2007JCLI1822.1. DOI
Dai A. Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J. Geophys. Res. Atmos. 2011;116:D12115. doi: 10.1029/2010JD015541. DOI
Hannaford J, Lloyd‐Hughes B, Keef C, Parry S, Prudhomme C. Examining the large‐scale spatial coherence of European drought using regional indicators of precipitation and streamflow deficit. Hydrol. Process. 2011;25:1146–1162. doi: 10.1002/hyp.7725. DOI
Cook BI, Anchukaitis KJ, Touchin R, Meko D, Cook ER. Spatiotemporal drought variability in the Mediterranean over the last 900 years. J. Geophys. Res. Atmos. 2016;121:2060–2074. doi: 10.1002/2015JD023929. PubMed DOI PMC
Seager R, et al. Causes of increasing aridification of the Mediterranean region in response to rising greenhouse gases. J. Clim. 2014;27:4655–4675. doi: 10.1175/JCLI-D-13-00446.1. DOI
Heinrich G, Gobiet A. The future of dry and wet spells in Europe: a comprehensive study based on the ENSEMBLES regional climate models. Int. J. Climatol. 2012;32:1951–1970. doi: 10.1002/joc.2421. DOI
Williams AP, et al. Contribution of anthropogenic warming to California drought during 2012–2014. Geophys. Res. Lett. 2015;42:6819–6828. doi: 10.1002/2015GL064924. DOI
Trenberth KE, Zhang Y, Gehne M. Intermittency in precipitation: duration, frequency, intensity, and amounts using hourly data. J. Hydromet. 2017;18:1393–1412. doi: 10.1175/JHM-D-16-0263.1. DOI
Washington WM, Meehl GA. Seasonal cycle experiment on the climate sensitivity due to a doubling of CO2 with an atmospheric general circulation model coupled to a simple mixed-layer ocean model. J. Geophys. Res. Atmos. 1984;89:9475–9503. doi: 10.1029/JD089iD06p09475. DOI
Knutti R, Sedláček J. Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. Change. 2013;3:369–373. doi: 10.1038/nclimate1716. DOI
Hurrell, J. W. & Van Loon, H. in Climatic Change at High Elevation Sites (eds Diaz H.F., Beniston M., Bradley R.S.) 69–94 (Springer, Dordrecht, Netherlands, 1997).
Folland CK, Knight J, Linderholm HW, Fereday D, Inerson S. The summer North Atlantic Oscillation: past, present, and future . J. Clim. 2009;22:1082–1103. doi: 10.1175/2008JCLI2459.1. DOI
Kingston DG, Stagge JH, Tallaksen LM, Hannah DM. European-scale drought: understanding connections between atmospheric circulation and meteorological drought indices. J. Clim. 2015;28:505–516. doi: 10.1175/JCLI-D-14-00001.1. DOI
Drobyshev I, et al. Atlantic SSTs control regime shifts in forest fire activity of Northern Scandinavia. Sci. Rep. 2016;6:22532. doi: 10.1038/srep22532. PubMed DOI PMC
Seftigen K, Björklund J, Cook ER, Linderholm HW. A tree-ring field reconstruction of Fennoscandian summer hydroclimate variability for the last millennium. Clim. Dyn. 2015;44:3141–3154. doi: 10.1007/s00382-014-2191-8. DOI
Ambaum MH, Hoskins BJ, Stephenson DB. Arctic oscillation or North Atlantic oscillation? J. Clim. 2001;14:3495–3507. doi: 10.1175/1520-0442(2001)014<3495:AOONAO>2.0.CO;2. DOI
Parry S, et al. Multi-year droughts in Europe: analysis of development and causes. Hydrol. Res. 2012;43:689–706. doi: 10.2166/nh.2012.024. DOI
Steirou E, Gerlitz L, Apel H, Merz B. Links between large-scale circulation patterns and streamflow in Central Europe: a review. J. Hydrol. 2017;549:484–500. doi: 10.1016/j.jhydrol.2017.04.003. DOI
Kyselý J, Huth R. Changes in atmospheric circulation over Europe detected by objective and subjective methods. Theor. Appl. Climatol. 2006;85:19–36. doi: 10.1007/s00704-005-0164-x. DOI
Baek SH, et al. Precipitation, temperature, and teleconnection signals across the combined North American, Monsoon Asia, and Old World Drought Atlases. J. Clim. 2017;30:7141–7155. doi: 10.1175/JCLI-D-16-0766.1. PubMed DOI PMC
Edwards TW, et al. Seasonal variability in Northern Hemisphere atmospheric circulation during the Medieval Climate Anomaly and the Little Ice Age. Quat. Sci. Rev. 2017;165:102–110. doi: 10.1016/j.quascirev.2017.04.018. DOI
Lorenz E. N. Empirical Orthogonal Functions and Statistical Weather Prediction. Technical report, Statistical Forecast Project Report 1, 49 (Dep of Meteor. MIT, Cambridge, MA, USA, 1956).
Trouet V, et al. Persistent positive North Atlantic oscillation mode dominated the Medieval Climate Anomaly. Science. 2009;324:78–80. doi: 10.1126/science.1166349. PubMed DOI
Stagge JH, Kingston DG, Tallaksen LM, Hannah DM. Observed drought indices show increasing divergence across Europe. Sci. Rep. 2017;7:14045. doi: 10.1038/s41598-017-14283-2. PubMed DOI PMC
Spinoni J, Naumann G, Vogt JV. Pan-European seasonal trends and recent changes of drought frequency and severity. Glob. Planet. Change. 2017;148:113–130. doi: 10.1016/j.gloplacha.2016.11.013. DOI
Stagge, J., Rizzi, J., Tallaksen, L. M. & Stahl, K. Future Meteorological Drought: Projections of Regional Climate Models for Europe, Technical Report No. 25, 23 (European Environmental Agency, Kopenhagen, Denmark, 2015).
Ruosteenoja K, Markkanen T, Venäläinen A, Räisänen P, Peltola H. Seasonal soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st century. Clim. Dyn. 2017;50:1177–1192. doi: 10.1007/s00382-017-3671-4. DOI
van Ulden A, Lenderink G, van den Hurk B, van Meijgaard E. Circulation statistics and climate change in Central Europe: PRUDENCE simulations and observations. Clim. Change. 2007;81:179–192. doi: 10.1007/s10584-006-9212-5. DOI
Vautard R, et al. The simulation of European heat waves from an ensemble of regional climate models within the Euro-CORDEX project. Clim. Dyn. 2013;41:2555–2575. doi: 10.1007/s00382-013-1714-z. DOI
Kröner N, et al. Separating climate change signals into thermodynamic, lapse-rate and circulation effects: theory and application to the European summer climate. Clim. Dyn. 2017;48:3425–3440. doi: 10.1007/s00382-016-3276-3. DOI
Lavers DA, Ralph FM, Waliser DE, Gershunov A, Dettinger MD. Climate change intensification of horizontal water vapor transport in CMIP5. Geophys. Res. Lett. 2015;42:5617–5625. doi: 10.1002/2015GL064672. DOI
Shepherd TG. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 2014;7:703. doi: 10.1038/ngeo2253. DOI
Deser C, Hurrell JW, Phillips AS. The role of the North Atlantic Oscillation in European climate projections. Clim. Dyn. 2017;49:3141–3157. doi: 10.1007/s00382-016-3502-z. DOI
Zappa G, Shepherd TG. Storylines of atmospheric circulation change for European regional climate impact assessment. J. Clim. 2017;30:6561–6577. doi: 10.1175/JCLI-D-16-0807.1. DOI
Seneviratne SI, et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 2010;99:125–161. doi: 10.1016/j.earscirev.2010.02.004. DOI
Markonis Y, Koutsoyiannis D. Scale-dependence of persistence in precipitation records. Nat. Clim. Change. 2016;6:399–401. doi: 10.1038/nclimate2894. DOI
Hasselmann K. Stochastic climate models part I. Theory. Tellus. 1976;28:473–485. doi: 10.3402/tellusa.v28i6.11316. DOI
Sutton RT, Hodson DL. Atlantic Ocean forcing of North American and European summer climate. Science. 2005;309:115–118. doi: 10.1126/science.1109496. PubMed DOI
Sheffield J, Andreadis KM, Wood EF, Lettenmaier DP. Global and continental drought in the second half of the twentieth century: severity–area–duration analysis and temporal variability of large-scale events. J. Clim. 2009;22:1962–1981. doi: 10.1175/2008JCLI2722.1. DOI
McCabe GJ, Palecki MA, Betancourt JL. Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA. 2004;101:4136–4141. doi: 10.1073/pnas.0306738101. PubMed DOI PMC
Andreadis KM, Lettenmaier DP. Trends in 20th century drought over the continental United States. Geophys. Res. Lett. 2006;33:L10403. doi: 10.1029/2006GL025711. DOI
Semenov VA, et al. The impact of North Atlantic–Arctic multidecadal variability on Northern Hemisphere surface air temperature. J. Clim. 2010;23:5668–5677. doi: 10.1175/2010JCLI3347.1. DOI
Steinman BA, Mann ME, Miller SK. Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science. 2015;347:988–991. doi: 10.1126/science.1257856. PubMed DOI
Clement A, et al. The Atlantic Multidecadal Oscillation without a role for ocean circulation. Science. 2015;350:320–324. doi: 10.1126/science.aab3980. PubMed DOI
Booth BB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature. 2012;484:228. doi: 10.1038/nature10946. PubMed DOI
Häkkinen S, Rhines PB, Worthen DL. Atmospheric blocking and Atlantic multidecadal ocean variability. Science. 2011;334:655–659. doi: 10.1126/science.1205683. PubMed DOI
van der Schrier G, Barichivich J, Briffa KR, Jones PD. A scPDSI-based global data set of dry and wet spells for 1901–2009. J. Geophys. Res. Atmos. 2013;118:4025–4048. doi: 10.1002/jgrd.50355. DOI
Luterbacher J, et al. European summer temperatures since Roman times. Environ. Res. Lett. 2016;11:024001. doi: 10.1088/1748-9326/11/2/024001. DOI
Luterbacher J, et al. Extending North Atlantic oscillation reconstructions back to 1500. Atmos. Sci. Lett. 2001;2:114–124. doi: 10.1006/asle.2001.0044. DOI
Gray ST, Graumlich LJ, Betancourt JL, Pederson GT. A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D. Geophys. Res. Lett. 2004;31:L12205. doi: 10.1029/2004GL019932. DOI
Déqué M, et al. Global high resolution versus Limited Area Modelclimate change projections over Europe: quantifying confidence level from PRUDENCE results. Clim. Dyn. 2005;25:653–670. doi: 10.1007/s00382-005-0052-1. DOI
Gareth, J, Witten, D, Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning: With Applications to R (Springer, New York, 2013).
Hosmer DW, Jr, Lemeshow S, Sturdivant RX. Applied Logistic Regression. 3rd edn. New York: John Wiley & Sons; 2013.
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2016). https://www.R-project.org/.