The rise of compound warm-season droughts in Europe

. 2021 Feb ; 7 (6) : . [epub] 20210203

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33536204

Drought is one of the main threats to food security and ecosystem productivity. During the past decades, Europe has experienced a series of droughts that caused substantial socioeconomic losses and environmental impacts. A key question is whether there are some similar characteristics in these droughts, especially when compared to the droughts that occurred further in the past. Answering this question is impossible with traditional single-index approaches and also short-term and often spatially inconsistent records. Here, using a multidimensional machine learning-based clustering algorithm and the hydrologic reconstruction of European drought, we determine the dominant drought types and investigate the changes in drought typology. We report a substantial increase in shorter warm-season droughts that are concurrent with an increase in potential evapotranspiration. If shifts reported here persist, then we will need new adaptive water management policies and, in the long run, we may observe considerable alterations in vegetation regimes and ecosystem functioning.

Zobrazit více v PubMed

Stahl K., Kohn I., Blauhut V., Urquijo J., De Stefano L., Acácio V., Dias S., Stagge J. H., Tallaksen L. M., Kampragou E., Van Loon A. F., Barker L. J., Melsen L. A., Bifulco C., Musolino D., de Carli A., Massarutto A., Assimacopoulos D., Van Lanen H. A. J., Impacts of European drought events: insights from an international database of text-based reports. Nat. Hazards Earth Syst. Sci. 16, 801–819 (2016).

Hoerling M., Eischeid J., Perlwitz J., Quan X., Zhang T., Pegion P., On the increased frequency of mediterranean drought. J. Climate 25, 2146–2161 (2012).

Spinoni J., Naumann G., Vogt J. V., Pan-european seasonal trends and recent changes of drought frequency and severity. Global Planet. Change 148, 113–130 (2017).

Feyen L., Dankers R., Impact of global warming on streamflow drought in Europe. J. Geophys. Res. Atmos. 114, (2009).

Vicente-Serrano S. M., Lopez-Moreno J.-I., Beguería S., Lorenzo-Lacruz J., Sanchez-Lorenzo A., García-Ruiz J. M., Azorin-Molina C., Morán-Tejeda E., Revuelto J., Trigo R., Coelho F., Espejo F., Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ. Res. Lett. 9, 044001 (2014).

Damberg L., AghaKouchak A., Global trends and patterns of drought from space. Theor. Appl. Climatol. 117, 441–448 (2014).

Spinoni J., Naumann G., Vogt J., Barbosa P., European drought climatologies and trends based on a multi-indicator approach. Global Planet. Change 127, 50–57 (2015).

Dai A., Zhao T., Uncertainties in historical changes and future projections of drought. Part I: Estimates of historical drought changes. Clim. Change 144, 519–533 (2017).

Mishra A. K., Singh V. P., A review of drought concepts. J. Hydrol. 391, 202–216 (2010).

Hao Z., Singh V. P., Drought characterization from a multivariate perspective: A review. J. Hydrol. 527, 668–678 (2015).

Redmond K. T., The depiction of drought: A commentary. Bull. Am. Meteorol. Soc. 83, 1143–1148 (2002).

J. Sheffield, E. F. Wood, Drought: Past Problems and Future Scenarios (Routledge, 2012).

Van Loon A., Van Lanen H., A process-based typology of hydrological drought. Hydrol. Earth Syst. Sci. 16, 1915–1946 (2012).

Gao Y., Markkanen T., Thum T., Aurela M., Lohila A., Mammarella I., Kämäräinen M., Hagemann S., Aalto T., Assessing various drought indicators in representing summer drought in boreal forests in finland. Hydrol. Earth Syst. Sci. 20, 175–191 (2016).

Heudorfer B., Stahl K., Comparison of different threshold level methods for drought propagation analysis in germany. Hydrol. Res. 48, 1311–1326 (2017).

Van Loon A., Laaha G., Hydrological drought severity explained by climate and catchment characteristics. J. Hydrol. 526, 3–14 (2015).

Samaniego L., Kumar R., Attinger S., Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour. Res. 46, W05523 (2010).

Kumar R., Samaniego L., Attinger S., Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations. Water Resour. Res. 49, 360–379 (2013).

Hanel M., Rakovec O., Markonis Y., Máca P., Samaniego L., Kyselý J., Kumar R., Revisiting the recent European droughts from a long-term perspective. Sci. Rep. 8, 9499 (2018). PubMed PMC

Moravec V., Markonis Y., Rakovec O., Kumar R., Hanel M., A 250-year european drought inventory derived from ensemble hydrologic modeling. Geophys. Res. Lett. 46, 5909–5917 (2019).

T. Kohonen, Self-Organizing Maps (Springer Series in Information Sciences, Springer, 2001), vol. 30.

AghaKouchak A., Cheng L., Mazdiyasni O., Farahmand A., Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 california drought. Geophys. Res. Lett. 41, 8847–8852 (2014).

Chiang F., Mazdiyasni O., AghaKouchak A., Amplified warming of droughts in southern united states in observations and model simulations. Sci. Adv. 4, eaat2380 (2018). PubMed PMC

Zscheischler J., Westra S., Van Den Hurk B. J., Seneviratne S. I., Ward P. J., Pitman A., AghaKouchak A., Bresch D. N., Leonard M., Wahl T., Zhang X., Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).

J. Zscheischler, B. van den Hurk, P. J. Ward, S. Westra, in Climate Extremes and Their Implications for Impact and Risk Assessment, J. Sillmann, S. Sippel, S. Russo, Eds. (Elsevier, 2020), pp. 59–76.

Van Loon A., Tijdeman E., Wanders N., Van Lanen H. J., Teuling A., Uijlenhoet R., How climate seasonality modifies drought duration and deficit. J. Geophys. Res. Atmos. 119, 4640–4656 (2014).

Barnett T. P., Adam J. C., Lettenmaier D. P., Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438, 303–309 (2005). PubMed

Metsämäki S., Böttcher K., Pulliainen J., Luojus K., Cohen J., Takala M., Mattila O.-P., Schwaizer G., Derksen C., Koponen S., The accuracy of snow melt-off day derived from optical and microwave radiometer data—A study for Europe. Remote Sens. Environ. 211, 1–12 (2018).

Hynčica M., Huth R., Long-term changes in precipitation phase in Europe in cold half year. Atmos. Res. 227, 79–88 (2019).

Niu G.-Y., Yang Z.-L., Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. J. Hydrometeorol. 7, 937–952 (2006).

Sousa P., Trigo R., Aizpurua P., Nieto R., Gimeno L., Garcia-Herrera R., Trends and extremes of drought indices throughout the 20th century in the Mediterranean. Nat. Hazards Earth Syst. Sci. 11, 33–51 (2011).

Philandras C., Nastos P., Kapsomenakis J., Douvis K., Tselioudis G., Zerefos C., Long term precipitation trends and variability within the Mediterranean region. Nat. Hazards Earth Syst. Sci. 11, 3235–3250 (2011).

Norrant C., Douguédroit A., Monthly and daily precipitation trends in the mediterranean (1950–2000). Theor. Appl. Climatol. 83, 89–106 (2006).

Vautard R., Yiou P., D’andrea F., De Noblet N., Viovy N., Cassou C., Polcher J., Ciais P., Kageyama M., Fan Y., Summertime european heat and drought waves induced by wintertime mediterranean rainfall deficit. Geophys. Res. Lett. 34, L07711 (2007).

Intergovernmental Panel on Climate Change, Climate Change 2013 The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2014), pp. 159–254.

Markonis Y., Hanel M., Máca P., Kyselý J., Cook E., Persistent multi-scale fluctuations shift european hydroclimate to its millennial boundaries. Nat. Commun. 9, 1767 (2018). PubMed PMC

Bogawski P., Bednorz E., Atmospheric conditions controlling extreme summertime evapotranspiration in Poland (Central Europe). Nat. Hazards 81, 55–69 (2016).

Duethmann D., Blöschl G., Why has catchment evaporation increased in the past 40 years? A data-based study in Austria. Hydrol. Earth Syst. Sci. 22, 5143–5158 (2018).

Maček U., Bezak N., Šraj M., Reference evapotranspiration changes in Slovenia, Europe. Agric. For. Meteorol. 260, 183–192 (2018).

Prăvălie R., Piticar A., Ros B., Sfîcă L., Bandoc G., Tiscovschi A., Patriche C., Spatio-temporal changes of the climatic water balance in Romania as a response to precipitation and reference evapotranspiration trends during 1961–2013. Catena 172, 295–312 (2019).

Laaha G., Gauster T., Tallaksen L. M., Vidal J.-P., Stahl K., Prudhomme C., Heudorfer B., Vlnas R., Ionita M., Van Lanen H. A., Adler M.-J., Caillouet L., Delus C., Fendekova M., Gailliez S., Hannaford J., Kingston D., Van Loon A. F., Mediero L., Osuch M., Romanowicz R., Sauquet E., Stagge J. H., Wong W. K., The European 2015 drought from a hydrological perspective. Hydrol. Earth Syst. Sci. 21, 3001–3024 (2017).

Hari V., Rakovec O., Markonis Y., Hanel M., Kumar R., Increased future occurrences of the exceptional 2018–2019 central european drought under global warming. Sci. Rep. 10, 12207 (2020). PubMed PMC

Cook B. I., Ault T. R., Smerdon J. E., Unprecedented 21st century drought risk in the american southwest and central plains. Sci. Adv. 1, e1400082 (2015). PubMed PMC

Hessl A. E., Anchukaitis K. J., Jelsema C., Cook B., Byambasuren O., Leland C., Nachin B., Pederson N., Tian H., Hayles L. A., Past and future drought in mongolia. Sci. Adv. 4, e1701832 (2018). PubMed PMC

Samaniego L., Thober S., Kumar R., Wanders N., Rakovec O., Pan M., Zink M., Sheffield J., Wood E., Marx A., Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change 8, 421–426 (2018).

Koutroulis A. G., Papadimitriou L. V., Grillakis M. G., Tsanis I. K., Wyser K., Betts R. A., Freshwater vulnerability under high end climate change. A pan-European assessment. Sci. Total Environ. 613-614, 271–286 (2018). PubMed

Grillakis M. G., Increase in severe and extreme soil moisture droughts for Europe under climate change. Sci. Total Environ. 660, 1245–1255 (2019). PubMed

Vicente-Serrano S. M., McVicar T. R., Miralles D. G., Yang Y., Tomas-Burguera M., Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change. Wiley Interdiscip. Rev. Clim. Chang. 11, e632 (2020).

Lhotka O., Trnka M., Kyselý J., Markonis Y., Balek J., Možný M., Atmospheric circulation as a factor contributing to increasing drought severity in central Europe. J. Geophys. Res. Atmos. 125, e2019JD032269 (2020).

Fatichi S., Leuzinger S., Paschalis A., Langley J. A., Barraclough A. D., Hovenden M. J., Partitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO2. Proc. Natl. Acad. Sci. U.S.A. 113, 12757–12762 (2016). PubMed PMC

Mastrotheodoros T., Pappas C., Molnar P., Burlando P., Keenan T. F., Gentine P., Gough C. M., Fatichi S., Linking plant functional trait plasticity and the large increase in forest water use efficiency. J. Geophys. Res. Biogeo. 122, 2393–2408 (2017).

Berdugo M., Delgado-Baquerizo M., Soliveres S., Hernández-Clemente R., Zhao Y., Gaitán J. J., Gross N., Saiz H., Maire V., Lehman A., Rillig M. C., Solé R. V., Maestre F. T., Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020). PubMed

Keenan T. F., Luo X., Zhang Y., Zhou S., Ecosystem aridity and atmospheric CO2. Science 368, 251–252 (2020). PubMed

Runge J., Bathiany S., Bollt E., Camps-Valls G., Coumou D., Deyle E., Glymour C., Kretschmer M., Mahecha M. D., Muñoz-Marí J., van Nes E. H., Peters J., Quax R., Reichstein M., Scheffer M., Schölkopf B., Spirtes P., Sugihara G., Sun J., Zhang K., Zscheischler J., Inferring causation from time series in earth system sciences. Nat. Commun. 10, 2553 (2019). PubMed PMC

Ombadi M., Nguyen P., Sorooshian S., Hsu K.-l., Evaluation of methods for causal discovery in hydrometeorological systems. Water Resour. Res. 56, e2020WR027251 (2020).

Ciais P., Reichstein M., Viovy N., Granier A., Ogée J., Allard V., Aubinet M., Buchmann N., Bernhofer C., Carrara A., Chevallier F., De Noblet N., Friend A. D., Friedlingstein P., Grünwald T., Heinesch B., Keronen P., Knohl A., Krinner G., Loustau D., Manca G., Matteucci G., Miglietta F., Ourcival J. M., Papale D., Pilegaard K., Rambal S., Seufert G., Soussana J. F., Sanz M. J., Schulze E. D., Vesala T., Valentini R., Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005). PubMed

Mastrotheodoros T., Pappas C., Molnar P., Burlando P., Manoli G., Parajka J., Rigon R., Szeles B., Bottazzi M., Hadjidoukas P., Fatichi S., More green and less blue water in the alps during warmer summers. Nat. Clim. Change 10, 155–161 (2020).

Van Loon A. F., Gleeson T., Clark J., Van Dijk A. I., Stahl K., Hannaford J., Di Baldassarre G., Teuling A. J., Tallaksen L. M., Uijlenhoet R., Hannah D. M., Sheffield J., Svoboda M., Verbeiren B., Wagener T., Rangecroft S., Wanders N., Van Lanen H. A. J., Drought in the anthropocene. Nat. Geosci. 9, 89–91 (2016).

Harris I., Jones P., Osborn T., Lister D., Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

Oudin L., Hervieu F., Michel C., Perrin C., Andréassian V., Anctil F., Loumagne C., Which potential evapotranspiration input for a lumped rainfall–runoff model?: Part 2—Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. J. Hydrol. 303, 290–306 (2005).

Shi H., Li T., Wei J., Evaluation of the gridded cru ts precipitation dataset with the point raingauge records over the three-river headwaters region. J. Hydrol. 548, 322–332 (2017).

Herrera S., Kotlarski S., Soares P. M., Cardoso R. M., Jaczewski A., Gutiérrez J. M., Maraun D., Uncertainty in gridded precipitation products: Influence of station density, interpolation method and grid resolution. Int. J. Climatol. 39, 3717–3729 (2019).

Schroeer K., Kirchengast G., O S., Strong dependence of extreme convective precipitation intensities on gauge network density. Geophys. Res. Lett. 45, 8253–8263 (2018).

Lindström G., Johansson B., Persson M., Gardelin M., Bergström S., Development and test of the distributed hbv-96 hydrological model. J. Hydrol. 201, 272–288 (1997).

Liang X., Wood E. F., Lettenmaier D. P., Surface soil moisture parameterization of the vic-2l model: Evaluation and modification. Global Planet. Change 13, 195–206 (1996).

Rakovec O., Kumar R., Mai J., Cuntz M., Thober S., Zink M., Attinger S., Schäfer D., Schrön M., Samaniego L., Multiscale and multivariate evaluation of water fluxes and states over European river basins. J. Hydrometeorol. 19, 287–307 (2016).

Kumar R., Livneh B., Samaniego L., Toward computationally efficient large-scale hydrologic predictions with a multiscale regionalization scheme. Water Resour. Res. 49, 5700–5714 (2013).

Thober S., Kumar R., Wanders N., Marx A., Pan M., Rakovec O., Samaniego L., Sheffield J., Wood E. F., Zink M., Multi-model ensemble projections of european river floods and high flows at 1.5, 2, and 3 degrees global warming. Environ. Res. Lett. 13, 014003 (2018).

Marx A., Kumar R., Thober S., Rakovec O., Wanders N., Zink M., Wood E. F., Pan M., Sheffield J., Samaniego L., Climate change alters low flows in europe under global warming of 1.5, 2, and 3 c. Hydrol. Earth Syst. Sci. 22, 1017–1032 (2018).

L. M. Tallaksen, H. A. Van Lanen, Hydrological Drought: Processes and Estimation Methods for Streamflow and Groundwater (Elsevier, 2004), vol. 48.

Vidal J.-P., Martin E., Kitova N., Najac J., Soubeyroux J.-M., Evolution of spatio-temporal drought characteristics: validation, projections and effect of adaptation scenarios. Hydrol. Earth Syst. Sci. 16, 2935–2955 (2012).

Wanders N., Wada Y., Van Lanen H., Global hydrological droughts in the 21st century under a changing hydrological regime. Earth Syst. Dynam. 6, 1–15 (2015).

Papalexiou S. M., Unified theory for stochastic modelling of hydroclimatic processes: Preserving marginal distributions, correlation structures, and intermittency. Adv. Water Resour. 115, 234–252 (2018).

Papalexiou S. M., Markonis Y., Lombardo F., AghaKouchak A., Foufoula-Georgiou E., Precise temporal disaggregation preserving marginals and correlations (dipmac) for stationary and nonstationary processes. Water Resour. Res. 54, 7435–7458 (2018).

A. Ultsch, H. P. Siemon, Kohonen’s self organizing feature maps for exploratory data analysis, in Proceedings of the International Neural Network Conference (INNC-90), Paris, France, July 9–13, 1990 1. Dordrecht, Netherlands, B. Widrow, B. Angeniol, Eds. (Kluwer Academic Press, 1990), vol. 1, pp. 305–308.

Kalteh A. M., Hjorth P., Berndtsson R., Review of the self-organizing map (som) approach in water resources: Analysis, modelling and application. Environ. Model. Software 23, 835–845 (2008).

Markonis Y., Strnad F., Representation of European hydroclimatic patterns with self-organizing maps. The Holocene 30, 1155–1162 (2020).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Probabilistic Evaluation of Drought in CMIP6 Simulations

. 2021 Oct ; 9 (10) : e2021EF002150. [epub] 20211011

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...