Increased future occurrences of the exceptional 2018-2019 Central European drought under global warming

. 2020 Aug 06 ; 10 (1) : 12207. [epub] 20200806

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32764540
Odkazy

PubMed 32764540
PubMed Central PMC7413549
DOI 10.1038/s41598-020-68872-9
PII: 10.1038/s41598-020-68872-9
Knihovny.cz E-zdroje

Since the spring 2018, a large part of Europe has been in the midst of a record-setting drought. Using long-term observations, we demonstrate that the occurrence of the 2018-2019 (consecutive) summer drought is unprecedented in the last 250 years, and its combined impact on the growing season vegetation activities is stronger compared to the 2003 European drought. Using a suite of climate model simulation outputs, we underpin the role of anthropogenic warming on exacerbating the future risk of such a consecutive drought event. Under the highest Representative Concentration Pathway, (RCP 8.5), we notice a seven-fold increase in the occurrence of the consecutive droughts, with additional 40 ([Formula: see text]) million ha of cultivated areas being affected by such droughts, during the second half of the twenty-first century. The occurrence is significantly reduced under low and medium scenarios (RCP 2.6 and RCP 4.5), suggesting that an effective mitigation strategy could aid in reducing the risk of future consecutive droughts.

Zobrazit více v PubMed

Pall P, et al. Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature. 2011;470:382–385. PubMed

Min S-K, Zhang X, Zwiers FW, Hegerl GC. Human contribution to more-intense precipitation extremes. Nature. 2011;470:378–381. PubMed

Ciais P, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature. 2005;437:529–533. PubMed

Liu, X., He, B., Guo, L., Huang, L. & Chen, D. Similarities and differences in the mechanisms causing the European summer heatwaves in 2003, 2010, and 2018. Earth’s Futurein press (2020).

Ionita M, et al. The European 2015 drought from a climatological perspective. Hydrol. Earth Syst. Sci. 2017;21:1397–1419.

Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H. European seasonal and annual temperature variability, trends, and extremes since 1500. Science. 2004;303:1499–1503. PubMed

Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, García-Herrera R. The hot summer of 2010: redrawing the temperature record map of Europe. Science. 2011;332:220–224. PubMed

Samaniego L, et al. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change. 2018;8:421.

Dai A. Increasing drought under global warming in observations and models. Nat. Clim. Change. 2013;3:52–58.

Trenberth KE, et al. Global warming and changes in drought. Nat. Clim. Change. 2014;4:17–22.

Huang J, Yu H, Guan X, Wang G, Guo R. Accelerated dryland expansion under climate change. Nat. Clim. Change. 2016;6:166–171.

He B, et al. Recovery of ecosystem carbon and energy fluxes from the 2003 drought in Europe and the 2012 drought in the United States. Geophys. Res. Lett. 2018;45:4879–4888.

Scott RL, Jenerette GD, Potts DL, Huxman TE. Effects of seasonal drought on net carbon dioxide exchange from a woody-plant-encroached semiarid grassland. J. Geophys. Res. Biogeosci. 2009;114:G04004.

Pei F, Li X, Liu X, Lao C. Assessing the impacts of droughts on net primary productivity in China. J. Environ. Manag. 2013;114:362–371. PubMed

Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC. Climate change threats to plant diversity in europe. Proc. Nat. Acad. Sci. 2005;102:8245–8250. PubMed PMC

Brisson N, et al. Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Res. 2010;119:201–212.

Hawkins E, et al. Increasing influence of heat stress on french maize yields from the 1960s to the 2030s. Glob. Change Biol. 2013;19:937–947. PubMed PMC

Kogan FN. Operational space technology for global vegetation assessment. Bull. Am. Meteorol. Soc. 2001;82:1949–1964.

Toreti, A. et al. The exceptional 2018 European water seesaw calls for action on adaptation. Earth’s Future7, 652–663 (2019).

Orth R, Zscheischler J, Seneviratne SI. Record dry summer in 2015 challenges precipitation projections in central Europe. Sci. Rep. 2016;6:1–8. PubMed PMC

de Ruiter, M. C. et al. Why we can no longer ignore consecutive disasters. Earth’s Future8, e2019EF001425 (2019).

Casty C, Raible CC, Stocker TF, Wanner H, Luterbacher J. A European pattern climatology 1766–2000. Clim. Dyn. 2007;29:791–805.

Harris I, Jones PD, Osborn TJ, Lister DH. Updated high-resolution grids of monthly climatic observations-the CRU TS3. 10 Dataset. Int. J. Climatol. 2014;34:623–642.

Vicente-Serrano SM, Beguería S, López-Moreno JI. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 2010;23:1696–1718.

Hanel M, et al. Revisiting the recent European droughts from a long-term perspective. Sci. Rep. 2018;8:9499. PubMed PMC

Brunner L, Schaller N, Anstey J, Sillmann J, Steiner AK. Dependence of present and future european temperature extremes on the location of atmospheric blocking. Geophys. Res. Lett. 2018;45:6311–6320. PubMed PMC

Brunner L, Hegerl GC, Steiner AK. Connecting atmospheric blocking to European temperature extremes in spring. J. Clim. 2017;30:585–594.

Miralles DG, Teuling AJ, Van Heerwaarden CC, De Arellano JV-G. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci. 2014;7:345–349.

Zhou S, et al. Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proc. Nat. Acad. Sci. 2019;116:18848–18853. PubMed PMC

Francis J, Skific N. Evidence linking rapid Arctic warming to mid-latitude weather patterns. Philos. Trans. R. Soc. A Math., Phys. Eng. Sci. 2015;373:20140170. PubMed PMC

Francis JA, Vavrus SJ, Cohen J. Amplified arctic warming and mid-latitude weather: new perspectives on emerging connections. Wiley Interdiscip. Rev. Clim. Change. 2017;8:e474.

Cohen J, et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014;7:627–637.

Zhang R, Sun C, Zhu J, Zhang R, Li W. Increased European heat waves in recent decades in response to shrinking Arctic sea ice and Eurasian snow cover. npj Clim. Atmos. Sci. 2020;3:1–9.

Francis JA, Vavrus SJ. Evidence linking arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. 2012;39:L06801.

Dai A, Luo D, Song M, Liu J. Arctic amplification is caused by sea-ice loss under increasing CO2. Nat. Commun. 2019;10:1–13. PubMed PMC

Barnes EA, Polvani LM. CMIP5 projections of Arctic amplification, of the North American/North Atlantic circulation, and of their relationship. J. Clim. 2015;28:5254–5271.

Dai A, Song M. Little influence of Arctic amplification on mid-latitude climate. Nat. Climate Change. 2020;10:231–237.

Taylor KE, Stouffer RJ, Meehl GA. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012;93:485–498.

Diffenbaugh NS, Swain DL, Touma D. Anthropogenic warming has increased drought risk in California. Proc. Nat. Acad. Sci. 2015;112:3931–3936. PubMed PMC

Fischer EM, Knutti R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Change. 2015;5:560–564.

Lehner F, et al. Projected drought risk in 1.5 C and 2 C warmer climates. Geophys. Res. Lett. 2017;44:7419–7428.

Klein Goldewijk K, Beusen A, Van Drecht G, De Vos M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 2011;20:73–86.

Bellprat O, Guemas V, Doblas-Reyes F, Donat MG. Towards reliable extreme weather and climate event attribution. Nat. Commun. 2019;10:1–7. PubMed PMC

James R, Washington R, Schleussner C-F, Rogelj J, Conway D. Characterizing half-a-degree difference: a review of methods for identifying regional climate responses to global warming targets. Wiley Interdiscip. Rev. Clim. Change. 2017;8:e457.

Hofstra N, Haylock M, New M, Jones PD. Testing E-OBS European high-resolution gridded data set of daily precipitation and surface temperature. J. Geophys. Res. Atmos. 2009;114:D21101.

Moravec V, Markonis Y, Rakovec O, Kumar R, Hanel M. A 250-year European drought inventory derived from ensemble hydrologic modeling. Geophys. Res. Lett. 2019;46:5909–5917.

Thober S, et al. Seasonal soil moisture drought prediction over Europe using the North American multi-model ensemble (NMME) J. Hydrometeorol. 2015;16:2329–2344.

Kogan FN. Global drought watch from space. Bull. Am. Meteorol. Soc. 1997;78:621–636.

Bachmair S, Tanguy M, Hannaford J, Stahl K. How well do meteorological indicators represent agricultural and forest drought across Europe? Environ. Res. Lett. 2018;13:034042.

Marcos R, Turco M, Bedía J, Llasat MC, Provenzale A. Seasonal predictability of summer fires in a mediterranean environment. Int. J. Wildl. Fire. 2015;24:1076–1084.

Turco M, Levin N, Tessler N, Saaroni H. Recent changes and relations among drought, vegetation and wildfires in the Eastern Mediterranean: the case of Israel. Global Planet. Change. 2017;151:28–35.

Labudová L, Labuda M, Takáč J. Comparison of SPI and SPEI applicability for drought impact assessment on crop production in the Danubian Lowland and the East Slovakian Lowland. Theoret. Appl. Climatol. 2017;128:491–506.

Turco M, et al. On the key role of droughts in the dynamics of summer fires in Mediterranean Europe. Sci. Rep. 2017;7:1–10. PubMed PMC

Stagge JH, Kingston DG, Tallaksen LM, Hannah DM. Observed drought indices show increasing divergence across Europe. Sci. Rep. 2017;7:1–10. PubMed PMC

Vicente-Serrano SM, McVicar TR, Miralles DG, Yang Y, Tomas-Burguera M. Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change. Wiley Interdiscip. Rev. Clim. Change. 2019;11:e632.

Schär C, et al. The role of increasing temperature variability in European summer heatwaves. Nature. 2004;427:332–336. PubMed

Adamowski K. Nonparametric estimation of low-flow frequencies. J. Hydraul. Eng. 1996;122:46–49.

Silverman BW. Density Estimation for Statistics and Data Analysis. Boca Raton: CRC Press; 1986.

Sheffield J, Wood EF. Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic cycle. J. Clim. 2008;21:432–458.

Oudin L, et al. Which potential evapotranspiration input for a lumped rainfall-runoff model?: Part 2-towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling. J. Hydrol. 2005;303:290–306.

Sheffield J, Wood EF, Roderick ML. Little change in global drought over the past 60 years. Nature. 2012;491:435–438. PubMed

Milly PC, Dunne KA. Potential evapotranspiration and continental drying. Nat. Clim. Change. 2016;6:946–949.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Tree-ring stable isotopes from the European Alps reveal long-term summer drying over the Holocene

. 2025 Apr 04 ; 11 (14) : eadr4161. [epub] 20250404

The rise of compound warm-season droughts in Europe

. 2021 Feb ; 7 (6) : . [epub] 20210203

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...