Revisiting the recent European droughts from a long-term perspective

. 2018 Jun 22 ; 8 (1) : 9499. [epub] 20180622

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29934591
Odkazy

PubMed 29934591
PubMed Central PMC6015036
DOI 10.1038/s41598-018-27464-4
PII: 10.1038/s41598-018-27464-4
Knihovny.cz E-zdroje

Early 21st-century droughts in Europe have been broadly regarded as exceptionally severe, substantially affecting a wide range of socio-economic sectors. These extreme events were linked mainly to increases in temperature and record-breaking heatwaves that have been influencing Europe since 2000, in combination with a lack of precipitation during the summer months. Drought propagated through all respective compartments of the hydrological cycle, involving low runoff and prolonged soil moisture deficits. What if these recent droughts are not as extreme as previously thought? Using reconstructed droughts over the last 250 years, we show that although the 2003 and 2015 droughts may be regarded as the most extreme droughts driven by precipitation deficits during the vegetation period, their spatial extent and severity at a long-term European scale are less uncommon. This conclusion is evident in our concurrent investigation of three major drought types - meteorological (precipitation), agricultural (soil moisture) and hydrological (grid-scale runoff) droughts. Additionally, unprecedented drying trends for soil moisture and corresponding increases in the frequency of agricultural droughts are also observed, reflecting the recurring periods of high temperatures. Since intense and extended meteorological droughts may reemerge in the future, our study highlights concerns regarding the impacts of such extreme events when combined with persistent decrease in European soil moisture.

Zobrazit více v PubMed

Fink AH, et al. The 2003 European summer heatwaves and drought–synoptic diagnosis and impacts. Weather. 2004;59:209–216. doi: 10.1256/wea.73.04. DOI

Laaha G, et al. The European 2015 drought from a hydrological perspective. Hydrol. Earth Syst. Sci. 2017;21:3001–3024. doi: 10.5194/hess-21-3001-2017. DOI

Ionita M, et al. The European 2015 drought from a climatological perspective. Hydrol. Earth Syst. Sci. 2017;21:1397–1419. doi: 10.5194/hess-21-1397-2017. DOI

Schär C, et al. The role of increasing temperature variability in European summer heatwaves. Nature. 2004;427:332–336. doi: 10.1038/nature02300. PubMed DOI

Luterbacher, J. et al. Exceptional European warmth of autumn 2006 and winter 2007: Historical context, the underlying dynamics, and its phenological impacts. Geophys. 34 (2007).

van der Velde M, Tubiello FN, Vrieling A, Bouraoui F. Impacts of extreme weather on wheat and maize in France: evaluating regional crop simulations against observed data. Clim. Chang. 2012;113:751–765. doi: 10.1007/s10584-011-0368-2. DOI

Van Lanen HA, et al. Hydrology needed to manage droughts: the 2015 European case. Hydrol. Process. 2016;30:3097–3104. doi: 10.1002/hyp.10838. DOI

Robine J-M, et al. Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus Biol. 2008;331:171–178. doi: 10.1016/j.crvi.2007.12.001. PubMed DOI

Ciais P, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nat. 2005;437:529–533. doi: 10.1038/nature03972. PubMed DOI

Schook DM, Friedman JM, Rathburn SL. Flow reconstructions in the Upper Missouri River Basin using riparian tree rings. Water Resour. Res. 2016;52:8159–8173. doi: 10.1002/2016WR018845. DOI

Ho, M., Lall, U., Sun, X. & Cook, E. R. Multiscale temporal variability and regional patterns in 555 years of conterminous U.S. streamflow. Water Resour. Res. (2017).

Benito G, et al. Use of systematic, palaeoflood and historical data for the improvement of flood risk estimation. Review of scientific methods. Nat. Hazards. 2004;31:623–643. doi: 10.1023/B:NHAZ.0000024895.48463.eb. DOI

Ho M, Kiem AS, Verdon-Kidd DC. Water Resour. Res. 2015. A paleoclimate rainfall reconstruction in the Murray-Darling Basin (MDB), Australia: 2. Assessing hydroclimatic risk using paleoclimate records of wet and dry epochs; pp. 8380–8396.

Steinschneider S, Ho M, Cook ER, Lall U. Can PDSI inform extreme precipitation?: An exploration with a 500 year long paleoclimate reconstruction over the U.S. Water Resour. Res. 2016;52:3866–3880. doi: 10.1002/2016WR018712. DOI

Cook ER, et al. Old World megadroughts and pluvials during the Common Era. Sci. advances. 2015;1:e1500561. doi: 10.1126/sciadv.1500561. PubMed DOI PMC

Spraggs G, Peaver L, Jones P, Ede P. Re-construction of historic drought in the Anglian Region (UK) over the period 1798–2010 and the implications for water resources and drought management. J. Hydrol. 2015;526:231–252. doi: 10.1016/j.jhydrol.2015.01.015. DOI

Caillouet L, Vidal J-P, Sauquet E, Devers A, Graff B. Ensemble reconstruction of spatio-temporal extreme low-flow events in France since 1871. Hydrol. Earth Syst. Sci. 2017;21:2923–2951. doi: 10.5194/hess-21-2923-2017. DOI

Kumar R, et al. Multiscale evaluation of the standardized precipitation index as a groundwater drought indicator. Hydrol. Earth Syst. Sci. 2016;20:1117. doi: 10.5194/hess-20-1117-2016. DOI

Seneviratne, S. I. et al. Changes in climate extremes and their impacts on the natural physical environment (Cambridge University Press, 2012).

Orth R, Vogel MM, Luterbacher J, Pfister C, Seneviratne SI. Did European temperatures in 1540 exceed present-day records? Environ. Res. Lett. 2016;11:114021–10. doi: 10.1088/1748-9326/11/11/114021. DOI

Brodie FJ. The great drought of 1893, and its attendant meteorological phenomena. Q. J. Royal Meteorol. Soc. 1894;20:1–30. doi: 10.1002/qj.4970208901. DOI

Bonacina L. The European drought of 1921. Nat. 1923;112:488–489. doi: 10.1038/112488b0. DOI

Pancost RD. Climate change narratives. Nature Geoscience. 2017;10:466–468. doi: 10.1038/ngeo2981. DOI

Casty C, Raible CC, Stocker TF, Wanner H, Luterbacher J. A European pattern climatology 1766–2000. Clim. Dyn. 2007;29:791–805. doi: 10.1007/s00382-007-0257-6. DOI

Samaniego, L., Kumar, R. & Attinger, S. Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour. Res. 46 (2010).

Kumar R, Samaniego L, Attinger S. Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations. Water Resour. Res. 2013;49:360–379. doi: 10.1029/2012WR012195. DOI

Van Loon AF. Hydrological drought explained. Wiley Interdiscip. Rev. Water. 2015;2:359–392. doi: 10.1002/wat2.1085. DOI

Van Loon A, Van Lanen H. A process-based typology of hydrological drought. Hydrol. Earth Syst. Sci. 2012;16:1915. doi: 10.5194/hess-16-1915-2012. DOI

Wanders N, Wada Y, Van Lanen H. Global hydrological droughts in the 21st century under a changing hydrological regime. Earth Syst. Dyn. 2015;6:1. doi: 10.5194/esd-6-1-2015. DOI

Sousa P, et al. Trends and extremes of drought indices throughout the 20th century in the Mediterranean. Nat. Hazards Earth Syst. Sci. 2011;11:33–51. doi: 10.5194/nhess-11-33-2011. DOI

Tallaksen, L. M. & Van Lanen, H. A. Hydrological drought: Processes and estimation methods for streamflow and groundwater, vol. 48 of Developments in water science (Elsevier, 2004).

Van Loon A, et al. How climate seasonality modifies drought duration and deficit. J. Geophys. Res. Atmospheres. 2014;119:4640–4656. doi: 10.1002/2013JD020383. DOI

Van Huijgevoort M, Van Lanen H, Teuling A, Uijlenhoet R. Identification of changes in hydrological drought characteristics from a multi-GCM driven ensemble constrained by observed discharge. J. Hydrol. 2014;512:421–434. doi: 10.1016/j.jhydrol.2014.02.060. DOI

Briffa K, Jones P, Hulme M. Summer moisture variability across Europe, 1892–1991: an analysis based on the Palmer drought severity index. Int. J. Climatol. 1994;14:475–506. doi: 10.1002/joc.3370140502. DOI

Pfister C, Weingartner R, Luterbacher J. Hydrological winter droughts over the last 450 years in the Upper Rhine basin: a methodological approach. Hydrol. Sci. J. 2006;51:966–985. doi: 10.1623/hysj.51.5.966. DOI

Wilson RJ, Luckman BH, Esper J. A 500 year dendroclimatic reconstruction of spring–summer precipitation from the lower Bavarian Forest region, Germany. Int. J. Climatol. 2005;25:611–630. doi: 10.1002/joc.1150. DOI

Vicente-Serrano SM, Cuadrat JM. North Atlantic oscillation control of droughts in north-east Spain: evaluation since 1600 AD. Clim. Chang. 2007;85:357–379. doi: 10.1007/s10584-007-9285-9. DOI

Cook, B. I., Anchukaitis, K. J., Touchan, R., Meko, D. M. & Cook, E. R. Spatiotemporal drought variability in the Mediterranean over the last 900 years. J. Geophys. Res. Atmospheres (2016). PubMed PMC

Feng, H. Individual contributions of climate and vegetation change to soil moisture trends across multiple spatial scales. Sci. Reports6 (2016). PubMed PMC

AghaKouchak A, Cheng L, Mazdiyasni O, Farahmand A. Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought. Geophys. Res. Lett. 2014;41:8847–8852. doi: 10.1002/2014GL062308. DOI

Griffin D, Anchukaitis KJ. How unusual is the 2012–2014 California drought? Geophys. Res. Lett. 2014;41:9017–9023. doi: 10.1002/2014GL062433. DOI

Wang S-Y, Hipps L, Gillies RR, Yoon J-H. Probable causes of the abnormal ridge accompanying the 2013–2014 California drought: ENSO precursor and anthropogenic warming footprint. Geophys. Res. Lett. 2014;41:3220–3226. doi: 10.1002/2014GL059748. DOI

Williams AP, et al. Contribution of anthropogenic warming to California drought during 2012–2014. Geophys. Res. Lett. 2015;42:6819–6828. doi: 10.1002/2015GL064924. DOI

Kwon H-H, Lall U. A copula-based nonstationary frequency analysis for the 2012–2015 drought in California. Water Resour. Res. 2016;52:5662–5675. doi: 10.1002/2016WR018959. DOI

Brázdil R, et al. Droughts in the Czech lands, 1090–2012 AD. Clim. Past. 2013;9:1985–2002. doi: 10.5194/cp-9-1985-2013. DOI

Stahl K, et al. Impacts of European drought events: insights from an international database of text-based reports. Nat. Hazards Earth Syst. Sci. 2016;16:801–819. doi: 10.5194/nhess-16-801-2016. DOI

Roberts N, et al. Palaeolimnological evidence for an east–west climate see-saw in the mediterranean since ad 900. Glob. Planet. Chang. 2012;84:23–34. doi: 10.1016/j.gloplacha.2011.11.002. DOI

Hartmann, D. Observations: Atmosphere and surface. In Stocker, T. F. et al. (eds) Climate Change 2013: The Physical Science Basis, chap. 2, 159–254 (Cambridge University Press, Cambridge, 2013).

Kwon H-H, Lall U, Kim S-J. The unusual 2013–2015 drought in South Korea in the context of a multicentury precipitation record: Inferences from a nonstationary, multivariate, Bayesian copula model. Geophys. Res. Lett. 2016;43:8534–8544. doi: 10.1002/2016GL070270. DOI

Casty C, Handorf D, Sempf M. Combined winter climate regimes over the North Atlantic/European sector 1766–2000. Geophys. Res. Lett. 2005;32:L13801. doi: 10.1029/2005GL022431. DOI

Piao S, et al. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc. Natl. academy Sci. 2007;104:15242–15247. doi: 10.1073/pnas.0707213104. PubMed DOI PMC

van Roosmalen, L., Sonnenborg, T. O. & Jensen, K. H. Impact of climate and land use change on the hydrology of a large-scale agricultural catchment. Water Resour. Res. 45 (2009).

Li Z, Liu W-Z, Zhang X-C, Zheng F-L. Impacts of land use change and climate variability on hydrology in an agricultural catchment on the loess plateau of china. J. hydrology. 2009;377:35–42. doi: 10.1016/j.jhydrol.2009.08.007. DOI

Harris I, Jones P, Osborn T, Lister D. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol. 2013;34:623–642. doi: 10.1002/joc.3711. DOI

Oudin L, et al. Which potential evapotranspiration input for a lumped rainfall–runoff model?: Part 2—Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. J. Hydrol. 2005;303:290–306. doi: 10.1016/j.jhydrol.2004.08.026. DOI

Lindström G, Johansson B, Persson M, Gardelin M, Bergström S. Development and test of the distributed HBV-96 hydrological model. J. Hydrol. 1997;201:272–288. doi: 10.1016/S0022-1694(97)00041-3. DOI

Liang X, Wood EF, Lettenmaier DP. Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Glob. 1996;13:195–206.

Rakovec O, et al. Multiscale and multivariate evaluation of water fluxes and states over European river basins. J. Hydrometeorol. 2016;17:287–307. doi: 10.1175/JHM-D-15-0054.1. DOI

Kumar R, Livneh B, Samaniego L. Toward computationally efficient large-scale hydrologic predictions with a multiscale regionalization scheme. Water Resour. Res. 2013;49:5700–5714. doi: 10.1002/wrcr.20431. DOI

Livneh B, Kumar R, Samaniego L. Influence of soil textural properties on hydrologic fluxes in the Mississippi river basin. Hydrol. Process. 2015;29:4638–4655. doi: 10.1002/hyp.10601. DOI

Samaniego L, et al. Toward seamless hydrologic predictions across scales. Hydrol. Earth Syst. Sci. Discuss. 2017;2017:1–36. doi: 10.5194/hess-2017-89. DOI

Rakovec, O., Kumar, R., Attinger, S. & Samaniego, L. Improving the realism of hydrologic model functioning through multivariate parameter estimation. Water Resour. Res. 52, 7779–7792 (2016).

Huang S, et al. Evaluation of an ensemble of regional hydrological models in 12 large-scale river basins worldwide. Clim. Chang. 2017;141:381–397. doi: 10.1007/s10584-016-1841-8. DOI

Zink M, Kumar R, Cuntz M, Samaniego L. A high-resolution dataset of water fluxes and states for germany accounting for parametric uncertainty. Hydrol. Earth Syst. Sci. 2017;21:1769–1790. doi: 10.5194/hess-21-1769-2017. DOI

Thober, S. et al. Multi-model ensemble projections of European river floods and high flows at 1.5, 2, and 3 degree global warming. Environ. Res. Lett. 13 (2017).

Marx A, et al. Climate change alters low flows in Europe under global warming of 1.5, 2, and 3C. Hydrol. Earth Syst. Sci. 2018;22:1017–1032. doi: 10.5194/hess-22-1017-2018. DOI

Lall U, Sharma A. A Nearest Neighbor Bootstrap For Resampling Hydrologic Time Series. Water Resour. Res. 1996;32:679–693. doi: 10.1029/95WR02966. DOI

Nowak, K., Prairie, J., Rajagopalan, B. & Lall, U. A nonparametric stochastic approach for multisite disaggregation of annual to daily streamflow. Water Resour. Res. 46 (2010).

Hofstra, N., Haylock, M., New, M. & Jones, P. D. Testing E-OBS European high-resolution gridded data set of daily precipitation and surface temperature. J. Geophys. Res. Atmos. 114 (2009).

Hanel M, Kožn R, Heřmanovský M, Roub R. An R package for assessment of statistical downscaling methods for hydrological climate change impact studies. Environ. Model. & Softw. 2017;95:22–28. doi: 10.1016/j.envsoft.2017.03.036. DOI

Luo, L. et al. Contribution of temperature and precipitation anomalies to the California drought during 2012–2015. Geophys. Res. Lett. (2017).

Koenker, R. Quantile regression (Cambridge University Press, 2005).

Vidal J-P, Martin E, Kitova N, Najac J, Soubeyroux J-M. Evolution of spatio-temporal drought characteristics: validation, projections and effect of adaptation scenarios. Hydrol. Earth Syst. Sci. 2012;16:2935–2955. doi: 10.5194/hess-16-2935-2012. DOI

Beard LR. Statistical analysis in hydrology. Trans. Am. Soc. Civ. Eng. 1943;108:1110–1160.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...