Probabilistic Evaluation of Drought in CMIP6 Simulations

. 2021 Oct ; 9 (10) : e2021EF002150. [epub] 20211011

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34820470

As droughts have widespread social and ecological impacts, it is critical to develop long-term adaptation and mitigation strategies to reduce drought vulnerability. Climate models are important in quantifying drought changes. Here, we assess the ability of 285 CMIP6 historical simulations, from 17 models, to reproduce drought duration and severity in three observational data sets using the Standardized Precipitation Index (SPI). We used summary statistics beyond the mean and standard deviation, and devised a novel probabilistic framework, based on the Hellinger distance, to quantify the difference between observed and simulated drought characteristics. Results show that many simulations have less than ± 10 % error in reproducing the observed drought summary statistics. The hypothesis that simulations and observations are described by the same distribution cannot be rejected for more than 80 % of the grids based on our H distance framework. No single model stood out as demonstrating consistently better performance over large regions of the globe. The variance in drought statistics among the simulations is higher in the tropics compared to other latitudinal zones. Though the models capture the characteristics of dry spells well, there is considerable bias in low precipitation values. Good model performance in terms of SPI does not imply good performance in simulating low precipitation. Our study emphasizes the need to probabilistically evaluate climate model simulations in order to both pinpoint model weaknesses and identify a subset of best-performing models that are useful for impact assessments.

Zobrazit více v PubMed

Abatzoglou, J. T. , & Rupp, D. E. (2017). Evaluating climate model simulations of drought for the northwestern United States. International Journal of Climatology, 37, 910–920. 10.1002/joc.5046 DOI

Abdelmoaty, H. M. , Papalexiou, S. M. , Rajulapati, C. R. , & AghaKouchak, A. (2021). Biases beyond the mean in CMIP6 extreme precipitation: A global investigation. Earth's Future. 10.1029/2021ef002196 DOI

Adarsh, S. , & Reddy, M. J. (2019). Evaluation of trends and predictability of short‐term droughts in three meteorological subdivisions of India using multivariate EMD‐based hybrid modelling. Hydrological Processes, 33, 130–143. 10.1002/hyp.13316 DOI

AghaKouchak, A. , Chiang, F. , Huning, L. S. , Love, C. A. , Mallakpour, I. , Mazdiyasni, O. , et al. (2020). Climate extremes and compound hazards in a warming world. Annual Review of Earth and Planetary Sciences, 48, 519–548. 10.1146/annurev-earth-071719-055228 DOI

Allen, M. R. , & Ingram, W. J. (2002). Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 228–232. 10.1038/nature01092 PubMed DOI

Andreadis, K. M. , & Lettenmaier, D. P. (2006). Trends in 20th century drought over the continental United States. Geophysical Research Letters, 33. 10.1029/2006GL025711 DOI

Ault, T. R. , Cole, J. E. , & George, S. S. (2012). The amplitude of decadal to multidecadal variability in precipitation simulated by state‐of‐the‐art climate models. Geophysical Research Letters, 39. 10.1029/2012GL053424 DOI

Bader, D. C. , Leung, R. , Taylor, M. , & McCoy, R. B. (2019). E3SM‐Project E3SM1.0 model output prepared for CMIP6 CMIP. 10.22033/ESGF/CMIP6.2294 DOI

Becker, A. , Finger, P. , Meyer‐Christoffer, A. , Rudolf, B. , Schamm, K. , Schneider, U. , & Ziese, M. (2013). A description of the global land‐surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth System Science Data, 5(1), 71–99. 10.5194/essd-5-71-2013 DOI

Bethke, I. , Wang, Y. , Counillon, F. , Kimmritz, M. , Fransner, F. , Samuelsen, A. , et al. (2019). NCC NorCPM1 model output prepared for CMIP6 CMIP. 10.22033/ESGF/CMIP6.10843 DOI

Bindoff, N. L. , Stott, P. A. , AchutaRao, K. M. , Allen, M. R. , Gillett, N. , Gutzler, D. , et al. (2014). Detection and attribution of climate change: From global to regional. In Climate change 2013 ‐ The physical science basis (pp. 867–952). Cambridge University Press. 10.1017/CBO9781107415324.022 DOI

Boucher, O. , Denvil, S. , Caubel, A. , & Foujols, M. A. (2018). IPSL IPSL‐CM6A‐LR model output prepared for CMIP6 CMIP historical. 10.22033/ESGF/CMIP6.5195 DOI

Cao, J. , & Wang, B. (2019). NUIST NESMv3 model output prepared for CMIP6 CMIP. 10.22033/ESGF/CMIP6.2021 DOI

Chiang, F. , Mazdiyasni, O. , & AghaKouchak, A. (2021). Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nature Communications, 12, 2754. 10.1038/s41467-021-22314-w PubMed DOI PMC

Chou, C. , Chiang, J. C. H. , Lan, C.‐W. , Chung, C.‐H. , Liao, Y.‐C. , & Lee, C.‐J. (2013). Increase in the range between wet and dry season precipitation. Nature Geoscience, 6, 263–267. 10.1038/ngeo1744 DOI

Cook, B. I. , Mankin, J. S. , Marvel, K. , Williams, A. P. , Smerdon, J. E. , & Anchukaitis, K. J. (2020). Twenty‐first century drought projections in the CMIP6 forcing scenarios. Earth’s Future, 8, e2019EF001461. 10.1029/2019EF001461 DOI

Dai, A. (2013). Increasing drought under global warming in observations and models. Nature Climate Change, 3, 52–58. 10.1038/nclimate1633 DOI

Danabasoglu, G. (2019). NCAR CESM2 model output prepared for CMIP6 CMIP historical. 10.22033/ESGF/CMIP6.7627 DOI

Deser, C. , Phillips, A. , Bourdette, V. , & Teng, H. (2012). Uncertainty in climate change projections: The role of internal variability. Climate Dynamics, 38, 527–546. 10.1007/s00382-010-0977-x DOI

Deser, C. , Phillips, A. S. , Alexander, M. A. , & Smoliak, B. V. (2014). Projecting North American climate over the next 50 years: Uncertainty due to internal variability. Journal of Climate, 27, 2271–2296. 10.1175/JCLI-D-13-00451.1 DOI

EC Earth . (2019). EC‐Earth‐Consortium EC‐Earth3 model output prepared for CMIP6 CMIP historical. Earth System Grid Federation.

Eyring, V. , Bony, S. , Meehl, G. A. , Senior, C. A. , Stevens, B. , Stouffer, R. J. , & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937–1958. 10.5194/gmd-9-1937-2016 DOI

Eyring, V. , Cox, P. M. , Flato, G. M. , Gleckler, P. J. , Abramowitz, G. , Caldwell, P. , et al. (2019). Taking climate model evaluation to the next level. Nature Climate Change, 9, 102–110. 10.1038/s41558-018-0355-y DOI

Farahmand, A. , & AghaKouchak, A. (2015). A generalized framework for deriving nonparametric standardized drought indicators. Advances in Water Resources, 76, 140–145. 10.1016/j.advwatres.2014.11.012 DOI

Fischer, E. M. , Sedláček, J. , Hawkins, E. , & Knutti, R. (2014). Models agree on forced response pattern of precipitation and temperature extremes. Geophysical Research Letters, 41, 8554–8562. 10.1002/2014GL062018 DOI

Gaetani, M. , & Mohino, E. (2013). Decadal prediction of the Sahelian precipitation in CMIP5 simulations. Journal of Climate, 26, 7708–7719. 10.1175/JCLI-D-12-00635.1 DOI

Hao, Z. , AghaKouchak, A. , & Phillips, T. J. (2013). Changes in concurrent monthly precipitation and temperature extremes. Environmental Research Letters, 8, 034014. 10.1088/1748-9326/8/3/034014 DOI

Harris, I. , Jones, P. D. , Osborn, T. J. , & Lister, D. H. (2014). Updated high‐resolution grids of monthly climatic observations – The CRU TS3.10 Dataset. International Journal of Climatology, 34, 623–642. 10.1002/joc.3711 DOI

Harris, I. C. , & Jones, P. D. (2017). CRU TS4.00: Climatic Research Unit (CRU) Time‐Series (TS) version 4.00 of high‐resolution gridded data of month‐by‐month variation in climate (Jan. 1901–Dec. 2015). Centre for Environmental Data Analysis.

Harrower, M. , & Brewer, C. A. (2003). ColorBrewer.org: An online tool for selecting colour schemes for maps. The Cartographic Journal, 40, 27–37. 10.1179/000870403235002042 DOI

Hayes, M. , Svoboda, M. , Wall, N. , & Widhalm, M. (2011). The Lincoln declaration on drought indices: Universal meteorological drought index recommended. Bulletin of the American Meteorological Society, 92, 485–488. 10.1175/2010BAMS3103.1 DOI

Hellinger, E. (1909). Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen. Journal für die Reine und Angewandte Mathematik, 136, 210–271. 10.1515/crll.1909.136.210 DOI

Janssen, E. , Sriver, R. L. , Wuebbles, D. J. , & Kunkel, K. E. (2016). Seasonal and regional variations in extreme precipitation event frequency using CMIP5. Geophysical Research Letters, 43, 5385–5393. 10.1002/2016GL069151 DOI

Jiang, Z. , Li, W. , Xu, J. , & Li, L. (2015). Extreme precipitation indices over China in CMIP5 models. Part I: Model evaluation. Journal of Climate, 28, 8603–8619. 10.1175/JCLI-D-15-0099.1 DOI

Jones, P. W. (1999). First‐ and second‐order conservative remapping schemes for grids in spherical coordinates. Monthly Weather Review, 127, 2204–2210. 10.1175/1520-0493(1999)127<2204:fasocr>2.0.co;2 DOI

Joshi, M. K. , & Kucharski, F. (2017). Impact of Interdecadal Pacific Oscillation on Indian summer monsoon rainfall: An assessment from CMIP5 climate models. Climate Dynamics, 48, 2375–2391. 10.1007/s00382-016-3210-8 DOI

Jungclaus, J. , Bittner, M. , Wieners, K.‐H. , Wachsmann, F. , Schupfner, M. , Legutke, S. , et al. (2019). MPI‐M MPI‐ESM1.2‐HR model output prepared for CMIP6 CMIP historical. 10.22033/ESGF/CMIP6.6594 DOI

Kam, J. , Min, S.‐K. , Wolski, P. , & Kug, J.‐S. (2021). CMIP6 model‐based assessment of anthropogenic influence on the long sustained Western Cape drought over 2015–19. Bulletin of the American Meteorological Society, 102, S45–S50. 10.1175/BAMS-D-20-0159.1 DOI

Kharin, V. V. , Zwiers, F. W. , Zhang, X. , & Wehner, M. (2013). Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 119, 345–357. 10.1007/s10584-013-0705-8 DOI

Knutti, R. , & Sedláček, J. (2013). Robustness and uncertainties in the new CMIP5 climate model projections. Nature Climate Change, 3, 369–373. 10.1038/nclimate1716 DOI

Knutti, R. , Sedláček, J. , Sanderson, B. M. , Lorenz, R. , Fischer, E. M. , & Eyring, V. (2017). A climate model projection weighting scheme accounting for performance and interdependence. Geophysical Research Letters, 44, 1909–1918. 10.1002/2016GL072012 DOI

Kogan, F. N. (1997). Global drought watch from space. Bulletin of the American Meteorological Society, 78, 621–636. 10.1175/1520-0477(1997)078<0621:gdwfs>2.0.co;2 DOI

Kumar, M. N. , Murthy, C. S. , Sai, M. V. R. S. , & Roy, P. S. (2009). On the use of Standardized Precipitation Index (SPI) for drought intensity assessment. Meteorological Applications, 16, 381–389. 10.1002/met.136 DOI

LeComte, D. (2011). Global weather highlights 2010: Flooding, heatwaves, and fires. Weatherwise, 64, 21–28. 10.1080/00431672.2011.566814 DOI

Lee, J.‐H. , Kwon, H.‐H. , Jang, H.‐W. , & Kim, T.‐W. (2016). Future changes in drought characteristics under extreme climate change over South Korea. Advances in Meteorology, 1, [WWW Document]. 10.1155/2016/9164265 DOI

Mann, M. E. , Steinman, B. A. , & Miller, S. K. (2020). Absence of internal multidecadal and interdecadal oscillations in climate model simulations. Nature Communications, 11, 49. 10.1038/s41467-019-13823-w PubMed DOI PMC

Markonis, Y. , Kumar, R. , Hanel, M. , Rakovec, O. , Máca, P. , & AghaKouchak, A. (2021). The rise of compound warm‐season droughts in Europe. Science Advances, 7, eabb9668. 10.1126/sciadv.abb9668 PubMed DOI PMC

McCabe, G. J. , & Wolock, D. M. (2015). Variability and trends in global drought. Earth and Space Science, 2, 223–228. 10.1002/2015EA000100 DOI

McKee, T. B. , Doesken, N. J. , & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. American Meteorological Society, 179–184.

Mishra, A. K. , & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391, 202–216. 10.1016/j.jhydrol.2010.07.012 DOI

NASA Goddard Institute for Space Studies (NASA/GISS) . (2018a). NASA‐GISS GISS‐E2.1G model output prepared for CMIP6 ISMIP6. 10.22033/ESGF/CMIP6.2066 DOI

NASA Goddard Institute for Space Studies (NASA/GISS) . (2018b). NASA‐GISS GISS‐E2.1H model output prepared for CMIP6 CMIP. 10.22033/ESGF/CMIP6.1421 DOI

Nasrollahi, N. , AghaKouchak, A. , Cheng, L. , Damberg, L. , Phillips, T. J. , Miao, C. , et al. (2015). How well do CMIP5 climate simulations replicate historical trends and patterns of meteorological droughts? Water Resources Research, 51, 2847–2864. 10.1002/2014WR016318 DOI

Naumann, G. , Alfieri, L. , Wyser, K. , Mentaschi, L. , Betts, R. A. , Carrao, H. , et al. (2018). Global changes in drought conditions under different levels of warming. Geophysical Research Letters, 45, 3285–3296. 10.1002/2017GL076521 DOI

Navarro‐Racines, C. , Tarapues, J. , Thornton, P. , Jarvis, A. , & Ramirez‐Villegas, J. (2020). High‐resolution and bias‐corrected CMIP5 projections for climate change impact assessments. Scientific Data, 7, 1–14. 10.1038/s41597-019-0343-8 PubMed DOI PMC

Nguyen, P. , Thorstensen, A. , Sorooshian, S. , Zhu, Q. , Tran, H. , Ashouri, H. , et al. (2017). Evaluation of CMIP5 model precipitation using PERSIANN‐CDR. Journal of Hydrometeorology, 18, 2313–2330. 10.1175/JHM-D-16-0201.1 DOI

Papalexiou, S. M. , AghaKouchak, A. , Trenberth, K. E. , & Foufoula‐Georgiou, E. (2018). Global, regional, and megacity trends in the highest temperature of the year: Diagnostics and evidence for accelerating trends. Earth’s Future, 6, 71–79. 10.1002/2017EF000709 PubMed DOI PMC

Papalexiou, S. M. , & Montanari, A. (2019). Global and regional increase of precipitation extremes under global warming. Water Resources Research, 55, 4901–4914. 10.1029/2018WR024067 DOI

Papalexiou, S. M. , Rajulapati, C. R. , Clark, M. P. , & Lehner, F. (2020). Robustness of CMIP6 historical global mean temperature simulations: Trends, longterm persistence, autocorrelation, and distributional shape. Earth’s Future, 8, e2020EF001667. 10.1029/2020EF001667 DOI

Polade, S. D. , Pierce, D. W. , Cayan, D. R. , Gershunov, A. , & Dettinger, M. D. (2014). The key role of dry days in changing regional climate and precipitation regimes. Scientific Reports, 4, 1–8. 10.1038/srep04364 PubMed DOI PMC

Rajczak, J. , & Schär, C. (2017). Projections of future precipitation extremes over Europe: A multimodel assessment of climate simulations. Journal of Geophysical Research: Atmospheres, 122, 10773–10800. 10.1002/2017JD027176 DOI

Rajsekhar, D. , Singh, V. P. , & Mishra, A. K. (2015). Integrated drought causality, hazard, and vulnerability assessment for future socioeconomic scenarios: An information theory perspective. Journal of Geophysical Research: Atmospheres, 120, 6346–6378. 10.1002/2014JD022670 DOI

Rajulapati, C. R. , Papalexiou, S. M. , Clark, M. P. , Razavi, S. , Tang, G. , & Pomeroy, J. W. (2020). Assessment of extremes in global precipitation products: How reliable are they? Journal of Hydrometeorology, 21, 2855–2873. 10.1175/JHM-D-20-0040.1 DOI

Rhee, J. , & Cho, J. (2015). Future changes in drought characteristics: Regional analysis for South Korea under CMIP5 projections. Journal of Hydrometeorology, 17, 437–451. 10.1175/JHM-D-15-0027.1 DOI

Samsel, F. , Klaassen, S. , & Rogers, D. H. (2018). ColorMoves: Real‐time interactive colormap construction for scientific visualization. IEEE Computer Graphics and Applications, 38, 20–29. 10.1109/MCG.2018.011461525 PubMed DOI

Schleussner, C.‐F. , Lissner, T. K. , Fischer, E. M. , Wohland, J. , Perrette, M. , Golly, A. , et al. (2016). Differential climate impacts for policy‐relevant limits to global warming: The case of 1.5°C and 2°C. Earth System Dynamics, 7, 327–351. 10.5194/esd-7-327-2016 DOI

Schneider, U. , Becker, A. , Finger, P. , Meyer‐Christoffer, A. , Rudolf, B. , & Ziese, M. (2011). GPCC full data reanalysis version 6.0 at 0.5°: Monthly land‐surface precipitation from rain‐gauges built on GTS‐based and historic data. 10.5194/essd-5-71-2013 DOI

Seferian, R. (2018). CNRM‐CERFACS CNRM‐ESM2‐1 model output prepared for CMIP6 CMIP historical. 10.22033/ESGF/CMIP6.4068 DOI

Sheffield, J. , Andreadis, K. M. , Wood, E. F. , & Lettenmaier, D. P. (2009). Global and continental drought in the second half of the twentieth century: Severity–area–duration analysis and temporal variability of large‐scale events. Journal of Climate, 22, 1962–1981. 10.1175/2008JCLI2722.1 DOI

Sivakumar, M. V. K. (2005). Impacts of natural disasters in agriculture, rangeland and forestry: An overview. In Sivakumar M. V. K., Motha R. P., & Das H. P. (Eds.), Natural disasters and extreme events in agriculture: Impacts and mitigation (pp. 1–22). Springer. 10.1007/3-540-28307-2_1 DOI

Spinoni, J. , Naumann, G. , Carrao, H. , Barbosa, P. , & Vogt, J. (2014). World drought frequency, duration, and severity for 1951–2010. International Journal of Climatology, 34, 2792–2804. 10.1002/joc.3875 DOI

Swart, N. C. , Cole, J. N. S. , Kharin, V. V. , Lazare, M. , Scinocca, J. F. , Gillett, N. P. , et al. (2019). CCCma CanESM5 model output prepared for CMIP6 CMIP historical. 10.22033/ESGF/CMIP6.3610 DOI

Tang, G. , Clark, M. P. , Newman, A. J. , Wood, A. W. , Papalexiou, S. M. , Vionnet, V. , & Whitfield, P. H. (2020). SCDNA: A serially complete precipitation and temperature dataset for North America from 1979 to 2018. Earth System Science Data, 12, 2381–2409. 10.5194/essd-12-2381-2020 DOI

Tang, G. , Clark, M. P. , Papalexiou, S. M. , Newman, A. J. , Wood, A. W. , Brunet, D. , & Whitfield, P. H. (2021). EMDNA: An Ensemble Meteorological Dataset for North America. Earth System Science Data, 13(7), 3337–3362. 10.5194/essd-13-3337-2021 DOI

Tang, Y. , Rumbold, S. , Ellis, R. , Kelley, D. , Mulcahy, J. , Sellar, A. , et al. (2019). MOHC UKESM1.0‐LL model output prepared for CMIP6 CMIP historical. Earth System Grid Federation.

Tatebe, H. , & Watanabe, M. (2018). MIROC MIROC6 model output prepared for CMIP6 CMIP historical. 10.22033/ESGF/CMIP6.5603 DOI

Thompson, D. W. J. , Barnes, E. A. , Deser, C. , Foust, W. E. , & Phillips, A. S. (2015). Quantifying the role of internal climate variability in future climate trends. Journal of Climate, 28, 6443–6456. 10.1175/JCLI-D-14-00830.1 DOI

Toreti, A. , & Naveau, P. (2015). On the evaluation of climate model simulated precipitation extremes. Environmental Research Letters, 10, 014012. 10.1088/1748-9326/10/1/014012 DOI

Trenberth, K. (2011). Changes in precipitation with climate change. Climate Research, 47, 123–138. 10.3354/cr00953 DOI

Trenberth, K. E. , Dai, A. , van der Schrier, G. , Jones, P. D. , Barichivich, J. , Briffa, K. R. , & Sheffield, J. (2014). Global warming and changes in drought. Nature Climate Change, 4, 17–22. 10.1038/nclimate2067 DOI

Trenberth, K. E. , & Zhang, Y. (2018). How often does it really rain? Bulletin of the American Meteorological Society, 99, 289–298. 10.1175/BAMS-D-17-0107.1 DOI

Trenberth, K. E. , Zhang, Y. , & Gehne, M. (2017). Intermittency in precipitation: Duration, frequency, intensity, and amounts using hourly data. Journal of Hydrometeorology, 18, 1393–1412. 10.1175/JHM-D-16-0263.1 DOI

Ukkola, A. M. , Kauwe, M. G. D. , Roderick, M. L. , Abramowitz, G. , & Pitman, A. J. (2020). Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophysical Research Letters, 47, e2020GL087820. 10.1029/2020GL087820 DOI

Ukkola, A. M. , Pitman, A. J. , De Kauwe, M. G. , Abramowitz, G. , Herger, N. , Evans, J. P. , & Decker, M. (2018). Evaluating CMIP5 model agreement for multiple drought metrics. Journal of Hydrometeorology, 19, 969–988. 10.1175/JHM-D-17-0099.1 DOI

Vatter, J. , Wagnitz, P. , & Hernandez, E. (2019). Drought risk – The global thirst for water in the era of climate crisis. WWF Germany.

Vicente‐Serrano, S. M. , Beguería, S. , Lorenzo‐Lacruz, J. , Camarero, J. J. , López‐Moreno, J. I. , Azorin‐Molina, C. , et al. (2012). Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interactions, 16, 1–27. 10.1175/2012EI000434.1 DOI

Vogt, J. V. , Safriel, U. , Maltitz, G. V. , Sokona, Y. , Zougmore, R. , Bastin, G. , & Hill, J. (2011). Monitoring and assessment of land degradation and desertification: Towards new conceptual and integrated approaches. Land Degradation & Development, 22, 150–165. 10.1002/ldr.1075 DOI

Voldoire, A. , Saint‐Martin, D. , Sénési, S. , Decharme, B. , Alias, A. , Chevallier, M. , et al. (2019). Evaluation of CMIP6 DECK experiments with CNRM‐CM6‐1. Journal of Advances in Modeling Earth Systems, 11, 2177–2213. 10.1029/2019MS001683 DOI

Volodin, E. , Mortikov, E. , Gritsun, A. , Lykossov, V. , Galin, V. , Diansky, N. , et al. (2019). INM INM‐CM5‐0 model output prepared for CMIP6 CMIP historical. 10.22033/ESGF/CMIP6.5070 DOI

Wang, T. , Tu, X. , Singh, V. P. , Chen, X. , & Lin, K. (2021). Global data assessment and analysis of drought characteristics based on CMIP6. Journal of Hydrology, 596, 126091. 10.1016/j.jhydrol.2021.126091 DOI

Wehner, M. , Easterling, D. R. , Lawrimore, J. H. , Heim, R. R. , Vose, R. S. , & Santer, B. D. (2011). Projections of future drought in the continental United States and Mexico. Journal of Hydrometeorology, 12, 1359–1377. 10.1175/2011JHM1351.1 DOI

Wieners, K.‐H. , Giorgetta, M. , Jungclaus, J. , Reick, C. , Esch, M. , Bittner, M. , et al. (2019). MPI‐M MPI‐ESM1.2‐LR model output prepared for CMIP6 CMIP historical. 10.22033/ESGF/CMIP6.6595 DOI

Willmott, C. J. , & Matsuura, K. (2001). Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1950 ‐ 1999). http://climate.geog.udel.edu/∼climate/html_pages/README.ghcn_ts2.html

Willmott, C. J. , & Robeson, S. M. (1995). Climatologically aided interpolation (CAI) of terrestrial air temperature. International Journal of Climatology, 15, 221–229. 10.1002/joc.3370150207 DOI

WMO . (2012). Standardized precipitation index user guide.

WMO, & GWP . (2016). Handbook of Drought Indicators and Indices (M. Svoboda and B.A. Fuchs). Integrated Drought Management Programme (IDMP), World Meteorological Organization and Global Water Partnership.

Wuebbles, D. , Meehl, G. , Hayhoe, K. , Karl, T. R. , Kunkel, K. , Santer, B. , et al. (2013). CMIP5 climate model analyses: Climate extremes in the United States. Bulletin of the American Meteorological Society, 95, 571–583. 10.1175/BAMS-D-12-00172.1 DOI

Yukimoto, S. , Koshiro, T. , Kawai, H. , Oshima, N. , Yoshida, K. , Urakawa, S. , et al. (2019). MRI MRI‐ESM2.0 model output prepared for CMIP6 CMIP. 10.22033/ESGF/CMIP6.621 DOI

Zhai, J. , Mondal, S. K. , Fischer, T. , Wang, Y. , Su, B. , Huang, J. , et al. (2020). Future drought characteristics through a multi‐model ensemble from CMIP6 over South Asia. Atmospheric Research, 246, 105111. 10.1016/j.atmosres.2020.105111 DOI

Zhang, H. , Fraedrich, K. , Blender, R. , & Zhu, X. (2013). Precipitation extremes in CMIP5 simulations on different time scales. Journal of Hydrometeorology, 14, 923–928. 10.1175/JHM-D-12-0181.1 DOI

Zhang, J. , & Wang, F. (2019). Changes in the risk of extreme climate events over East Asia at different global warming levels. Water, 11, 2535. 10.3390/w11122535 DOI

Zhang, M. , He, J. , Wang, B. , Wang, S. , Li, S. , Liu, W. , & Ma, X. (2013). Extreme drought changes in Southwest China from 1960 to 2009. Journal of Geographical Sciences, 23, 3–16. 10.1007/s11442-013-0989-7 DOI

Zhang, X. , Zwiers, F. W. , Hegerl, G. C. , Lambert, F. H. , Gillett, N. P. , Solomon, S. , et al. (2007). Detection of human influence on twentieth‐century precipitation trends. Nature, 448, 461–465. 10.1038/nature06025 PubMed DOI

Zhang, Y. , & Li, Z. (2020). Uncertainty analysis of standardized precipitation index due to the effects of probability distributions and parameter errors. Frontiers of Earth Science, 8. 10.3389/feart.2020.00076 DOI

Zhang, Y. , & Wu, R. (2021). Evaluating spatial patterns of Asian meteorological drought variations and associated SST anomalies in CMIP6 models. Theoretical and Applied Climatology, 145, 345–361. 10.1007/s00704-021-03639-4 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...