Trends in climatically driven extreme growth reductions of Picea abies and Pinus sylvestris in Central Europe
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34610189
DOI
10.1111/gcb.15922
Knihovny.cz E-zdroje
- Klíčová slova
- Norway spruce, Scots pine, cold spell, conifers, drought, tree growth, tree rings,
- MeSH
- borovice lesní * MeSH
- borovice * MeSH
- jedle * MeSH
- klimatické změny MeSH
- lesy MeSH
- období sucha MeSH
- smrk * MeSH
- stromy MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
Extreme tree growth reductions represent events of abrupt forest productivity decline and carbon sequestration reduction. An increase in their magnitude can represent an early warning signal of impending tree mortality. Yet the long-term trends in extreme growth reductions remain largely unknown. We analyzed the trends in the proportion of trees exhibiting extreme growth reductions in two Central-European conifer species-Pinus sylvestris (PISY) and Picea abies (PCAB)-between 1901 and 2018. We used a novel approach for extreme growth reduction quantification by relating their size to their mean recurrence interval. Twenty-eight sites throughout Czechia and Slovakia with 1120 ring width series representing high- and low-elevation forests were inspected for extreme growth reductions with recurrence intervals of 15 and 50 years along with their link to climatic drivers. Our results show the greatest growth reductions at low-elevation PCAB sites, indicating high vulnerability of PCAB to drought. The proportions of trees exhibiting extreme growth reductions increased over time at low-elevation PCAB, decreased recently following an abrupt increase in the 1970-1980s at high-elevation PCAB, and showed nonsignificant trends in high- and low-elevation PISY. Climatic drivers of extreme growth reductions, however, shifted over time for all site categories as the proportion of low-temperature-induced extreme growth reductions declined since the 1990s, whereas events caused by drought consistently increased in frequency during the same period. We observed higher growth volatility at the lower range of distribution compared with the upper range margin of PISY and PCAB. This will undoubtedly considerably impact tree growth and vitality as temperatures and incidence of drought in Central Europe are expected to further increase with ongoing climate change.
Czech Hydrometeorological Institute Prague Czechia
Department of Physical Geography and Geoecology Faculty of Science Charles University Prague Czechia
Zobrazit více v PubMed
Anderegg, W. R. L., Schwalm, C., Biondi, F., Camarero, J. J., Koch, G., Litvak, M., Ogle, K., Shaw, J. D., Shevliakova, E., Williams, A. P., Wolf, A., Ziaco, E., & Pacala, S. (2015). Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 349(6247), 528-532. https://doi.org/10.1126/science.aab1833
Anderegg, W. R. L., Trugman, A. T., Badgley, G., Konings, A. G., & Shaw, J. (2020). Divergent forest sensitivity to repeated extreme droughts. Nature Climate Change, 10(12), 1091-1095. https://doi.org/10.1038/s41558-020-00919-1
Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01
Battipaglia, G., Frank, D., Büntgen, U., Dobrovolnỳ, P., Brázdil, R., Pfister, C., & Esper, J. (2010). Five centuries of Central European temperature extremes reconstructed from tree-ring density and documentary evidence. Global and Planetary Change, 72(3), 182-191. https://doi.org/10.1016/j.gloplacha.2010.02.004
Bauwe, A., Koch, M., Kallweit, R., Konopatzky, A., Strohbach, B., & Lennartz, B. (2013). Tree-ring growth response of scots pine (Pinus sylvestris L.) to climate and soil water availability in the lowlands of north-eastern Germany. Baltic Forestry, 19(2), 212-225.
Bose, A. K., Gessler, A., Bolte, A., Bottero, A., Buras, A., Cailleret, M., Camarero, J. J., Haeni, M., Hereş, A. M., Hevia, A., Lévesque, M., Linares, J. C., Martinez-Vilalta, J., Matías, L., Menzel, A., Sánchez-Salguero, R., Saurer, M., Vennetier, M., Ziche, D., & Rigling, A. (2020). Growth and resilience responses of Scots pine to extreme droughts across Europe depend on predrought growth conditions. Global Change Biology, 26(8), 4521-4537. https://doi.org/10.1111/gcb.15153
Bosela, M., Tumajer, J., Cienciala, E., Dobor, L., Kulla, L., Marčiš, P., Popa, I., Sedmák, R., Sedmáková, D., Sitko, R., Šebeň, V., Štěpánek, P., & Büntgen, U. (2021). Climate warming induced synchronous growth decline in Norway spruce populations across biogeographical gradients since 2000. Science of the Total Environment, 752, 141794. https://doi.org/10.1016/j.scitotenv.2020.141794
Brázdil, R., Trnka, M., Mikšovský, J., Řezníčková, L., & Dobrovolný, P. (2015). Spring-summer droughts in the Czech Land in 1805-2012 and their forcings. International Journal of Climatology, 35(7), 1405-1421. https://doi.org/10.1002/joc.4065
Briffa, K. R., & Melvin, T. M. (2011). A closer look at regional curve standardization of tree-ring records: Justification of the need, a warning of some pitfalls, and suggested improvements in its application. Dendroclimatology, 5, 113-145. https://doi.org/10.1007/978-1-4020-5725-0_5
Brun, P., Psomas, A., Ginzler, C., Thuiller, W., Zappa, M., & Zimmermann, N. E. (2020). Large-scale early-wilting response of Central European forests to the 2018 extreme drought. Global Change Biology, 26(12), 7021-7035. https://doi.org/10.1111/gcb.15360
Bunn, A. G. (2008). A dendrochronology program library in R (dplR). Dendrochronologia, 26(2), 115-124. https://doi.org/10.1016/j.dendro.2008.01.002
Büntgen, U., Kaczka, R. J., Trnka, M., & Rigling, A. (2012). Ensemble estimates reveal a complex hydroclimatic sensitivity of pine growth at Carpathian cliff sites. Agricultural and Forest Meteorology, 160, 100-109. https://doi.org/10.1016/j.agrformet.2012.02.011
Buras, A., Schunk, C., Zeitrg, C., Herrmann, C., Kaiser, L., Lemme, H., Straub, C., Taeger, S., Gößwein, S., Klemmt, H. J., & Menzel, A. (2018). Are Scots pine forest edges particularly prone to drought-induced mortality? Environmental Research Letters, 13(2), 025001. https://doi.org/10.1088/1748-9326/aaa0b4
Camarero, J. J., Gazol, A., Sangüesa-Barreda, G., Oliva, J., & Vicente-Serrano, S. M. (2015). To die or not to die: Early warnings of tree dieback in response to a severe drought. Journal of Ecology, 103(1), 44-57. https://doi.org/10.1111/1365-2745.12295
Carrer, M. (2011). Individualistic and time-varying tree-ring growth to climate sensitivity. Plos One, 6, e22813. https://doi.org/10.1371/journal.pone.0022813
Charru, M., Seynave, I., Hervé, J. C., Bertrand, R., & Bontemps, J. D. (2017). Recent growth changes in Western European forests are driven by climate warming and structured across tree species climatic habitats. Annals of Forest Science, 74(2), 33. https://doi.org/10.1007/s13595-017-0626-1
Chytrý, M. (2013). Vegetation of the Czech Republic 4. Forest and scrub vegetation. Academia.
Cienciala, E., Altman, J., Doležal, J., Kopáček, J., Štěpánek, P., Ståhl, G., & Tumajer, J. (2018). Increased spruce tree growth in Central Europe since 1960s. Science of the Total Environment, 619-620, 1637-1647. https://doi.org/10.1016/j.scitotenv.2017.10.138
Cienciala, E., Tumajer, J., Zatloukal, V., Beranová, J., Holá, Š., Hůnová, I., & Russ, R. (2017). Recent spruce decline with biotic pathogen infestation as a result of interacting climate, deposition and soil variables. European Journal of Forest Research, 136(2), 307-317. https://doi.org/10.1007/s10342-017-1032-9
Cook, E., & Peters, K. (1981). The smoothing spline, a new approach to standardising forest interior tree-ring. Trre-Ring Bulletin, 41, 45-53.
Cook, E. R., Seager, R., Kushnir, Y., Briffa, K. R., Büntgen, U., Frank, D., Krusic, P. J., Tegel, W., van der Schrier, G., Andreu-Hayles, L., Baillie, M., Baittinger, C., Bleicher, N., Bonde, N., Brown, D., Carrer, M., Cooper, R., Čufar, K., Dittmar, C., … Zang, C. (2015). Old World megadroughts and pluvials during the Common Era. Science Advances, 1(10), 1-10. https://doi.org/10.1126/sciadv.1500561
Dannenberg, M. P., Wise, E. K., & Smith, W. K. (2019). Reduced tree growth in the semiarid United States due to asymmetric responses to intensifying precipitation extremes. Science Advances, 5(10), 1-11. https://doi.org/10.1126/sciadv.aaw0667
D'Arrigo, R., Wilson, R., & Anchukaitis, K. J. (2013). Volcanic cooling signal in tree ring temperature records for the past millennium. Journal of Geophysical Research: Atmospheres, 118(16), 9000-9010. https://doi.org/10.1002/jgrd.50692
DeSoto, L., Cailleret, M., Sterck, F., Jansen, S., Kramer, K., Robert, E. M. R., Aakala, T., Amoroso, M. M., Bigler, C., Camarero, J. J., Čufar, K., Gea-Izquierdo, G., Gillner, S., Haavik, L. J., Hereş, A.-M., Kane, J. M., Kharuk, V. I., Kitzberger, T., Klein, T., … Martínez-Vilalta, J. (2020). Low growth resilience to drought is related to future mortality risk in trees. Nature Communications, 11(1), 1-9. https://doi.org/10.1038/s41467-020-14300-5
Dingman, S. L. (2002). Physical hydrology. Waveland Press.
D'Orangeville, L., Houle, D., Duchesne, L., Phillips, R. P., Bergeron, Y., & Kneeshaw, D. (2018). Beneficial effects of climate warming on boreal tree growth may be transitory. Nature Communications, 9(1), 1-10. https://doi.org/10.1038/s41467-018-05705-4
Dubicka, M., & Glowicki, B. (2000). Air temperature and cloudiness at Sniezka between 1901 and 1998. Prace Geograficzne, 107, 205-212.
Etzold, S., Ziemińska, K., Rohner, B., Bottero, A., Bose, A. K., Ruehr, N. K., Zingg, A., & Rigling, A. (2019). One century of forest monitoring data in Switzerland reveals species- and site-specific trends of climate-induced tree mortality. Frontiers in Plant Science, 10, 307. https://doi.org/10.3389/fpls.2019.00307
Fritts, H. C. (1976). Tree rings and climate. Academic Press, https://doi.org/10.1016/b978-0-12-268450-0.x5001-0
Gao, S., Liu, R., Zhou, T., Fang, W., Yi, C., Lu, R., Zhao, X., & Luo, H. (2018). Dynamic responses of tree-ring growth to multiple dimensions of drought. Global Change Biology, 24(11), 5380-5390. https://doi.org/10.1111/gcb.14367
Hacket-Pain, A., Ascoli, D., Berretti, R., Mencuccini, M., Motta, R., Nola, P., Piussi, P., Ruffinatto, P., & Vacchiano, G. (2019). Temperature and masting control Norway spruce growth, but with high individual tree variability. Forest Ecology and Management, 438, 142-150. https://doi.org/10.1016/j.foreco.2019.02.014
Hanel, M., Rakovec, O., Markonis, Y., Máca, P., Samaniego, L., Kyselý, J., & Kumar, R. (2018). Revisiting the recent European droughts from a long-term perspective. Scientific Reports, 8(1), 1-11. https://doi.org/10.1038/s41598-018-27464-4
Hartl-Meier, C., Dittmar, C., Zang, C., & Rothe, A. (2014). Mountain forest growth response to climate change in the Northern Limestone Alps. Trees - Structure and Function, 28(3), 819-829. https://doi.org/10.1007/s00468-014-0994-1
Honkaniemi, J., Ojansuu, R., Kasanen, R., & Heliövaara, K. (2018). Interaction of disturbance agents on Norway spruce: A mechanistic model of bark beetle dynamics integrated in simulation framework WINDROT. Ecological Modelling, 388, 45-60. https://doi.org/10.1016/j.ecolmodel.2018.09.014
Huang, J., Kautz, M., Trowbridge, A. M., Hammerbacher, A., Raffa, K. F., Adams, H. D., Goodsman, D. W., Xu, C., Meddens, A. J. H., Kandasamy, D., Gershenzon, J., Seidl, R., & Hartmann, H. (2020). Tree defence and bark beetles in a drying world: Carbon partitioning, functioning and modelling. New Phytologist, 225(1), 26-36. https://doi.org/10.1111/nph.16173
IPCC. (2021). Climate change 2021: The physical science basis. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Jetschke, G., van der Maaten, E., & van der Maaten-Theunissen, M. (2019). Towards the extremes: A critical analysis of pointer year detection methods. Dendrochronologia, 53, 55-62. https://doi.org/10.1016/j.dendro.2018.11.004
Kolář, T., Čermák, P., Oulehle, F., Trnka, M., Štěpánek, P., Cudlín, P., Hruška, J., Büntgen, U., & Rybníček, M. (2015). Pollution control enhanced spruce growth in the “Black Triangle” near the Czech-Polish border. Science of the Total Environment, 538, 703-711. https://doi.org/10.1016/j.scitotenv.2015.08.105
Kolář, T., Čermák, P., Trnka, M., Žid, T., & Rybníček, M. (2017). Temporal changes in the climate sensitivity of Norway spruce and European beech along an elevation gradient in Central Europe. Agricultural and Forest Meteorology, 239, 24-33. https://doi.org/10.1016/j.agrformet.2017.02.028
Kolus, H. R., Huntzinger, D. N., Schwalm, C. R., Fisher, J. B., McKay, N., Fang, Y., Michalak, A. M., Schaefer, K., Wei, Y., Poulter, B., Mao, J., Parazoo, N. C., & Shi, X. (2019). Land carbon models underestimate the severity and duration of drought's impact on plant productivity. Scientific Reports, 9(1), 1-10. https://doi.org/10.1038/s41598-019-39373-1
Krejza, J., Cienciala, E., Světlík, J., Bellan, M., Noyer, E., Horáček, P., Štěpánek, P., & Marek, M. V. (2021). Evidence of climate-induced stress of Norway spruce along elevation gradient preceding the current dieback in Central Europe. Trees - Structure and Function, 35(1), 103-119. https://doi.org/10.1007/s00468-020-02022-6
Lebourgeois, F., Rathgeber, C. B. K., & Ulrich, E. (2010). Sensitivity of French temperate coniferous forests to climate variability and extreme events (Abies alba, Picea abies and Pinus sylvestris). Journal of Vegetation Science, 21(2), 364-376. https://doi.org/10.1111/j.1654-1103.2009.01148.x
Lévesque, M., Saurer, M., Siegwolf, R., Eilmann, B., Brang, P., Bugmann, H., & Rigling, A. (2013). Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch. Global Change Biology, 19(10), 3184-3199. https://doi.org/10.1111/gcb.12268
Linares, J. C., Camarero, J. J., & Carreira, J. A. (2010). Competition modulates the adaptation capacity of forests to climatic stress: Insights from recent growth decline and death in relict stands of the Mediterranean fir Abies pinsapo. Journal of Ecology, 98(3), 592-603. https://doi.org/10.1111/j.1365-2745.2010.01645.x
Lloret, F., Keeling, E. G., & Sala, A. (2011). Components of tree resilience: Effects of successive low-growth episodes in old ponderosa pine forests. Oikos, 120, 1909-1920. https://doi.org/10.1111/j.1600-0706.2011.19372.x
Mäkinen, H., Nöjd, P., Kahle, H. P., Neumann, U., Tveite, B., Mielikäinen, K., Röhle, H., & Spiecker, H. (2002). Radial growth variation of Norway spruce (Picea abies (L.) Karst.) across latitudinal and altitudinal gradients in central and northern Europe. Forest Ecology and Management, 171(3), 243-259. https://doi.org/10.1016/S0378-1127(01)00786-1
Martínez-Vilalta, J., López, B. C., Loepfe, L., & Lloret, F. (2012). Stand- and tree-level determinants of the drought response of Scots pine radial growth. Oecologia, 168(3), 877-888. https://doi.org/10.1007/s00442-011-2132-8
McGregor, I. R., Helcoski, R., Kunert, N., Tepley, A. J., Gonzalez-Akre, E. B., Herrmann, V., Zailaa, J., Stovall, A. E. L., Bourg, N. A., McShea, W. A., Pederson, N., Sack, L., & Anderson-Teixeira, K. J. (2021). Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forest. New Phytologist, 231, 601-616. https://doi.org/10.1111/nph.16996
Mozny, M., Trnka, M., Vlach, V., Vizina, A., Potopova, V., Zahradnicek, P., Stepanek, P., Hajkova, L., Staponites, L., & Zalud, Z. (2020). Past (1971-2018) and future (2021-2100) pan evaporation rates in the Czech Republic. Journal of Hydrology, 590, 125390. https://doi.org/10.1016/j.jhydrol.2020.125390
Neuwirth, B., Schweingruber, F. H., & Winiger, M. (2007). Spatial patterns of central European pointer years from 1901 to 1971. Dendrochronologia, 24(2-3), 79-89. https://doi.org/10.1016/j.dendro.2006.05.004
Oberhuber, W. (2017). Soil water availability and evaporative demand affect seasonal growth dynamics and use of stored water in co-occurring saplings and mature conifers under drought. Trees - Structure and Function, 31(2), 467-478. https://doi.org/10.1007/s00468-016-1468-4
Oberhuber, W., Stumböck, M., & Kofler, W. (1998). Climate-tree-growth relationships of Scots pine stands (Pinus sylvestris L.) exposed to soil dryness. Trees - Structure and Function, 13(1), 19-27. https://doi.org/10.1007/s004680050183
Pearson, C., Salzer, M., Wacker, L., Brewer, P., Sookdeo, A., & Kuniholm, P. (2020). Securing timelines in the ancient Mediterranean using multiproxy annual tree-ring data. Proceedings of the National Academy of Sciences of the United States of America, 117(31), 8410-8415. https://doi.org/10.1073/pnas.2013168117
Pebesma, E. J. (2004). Multivariable geostatistics in S: The gstat package. Computers & Geosciences, 30(7), 683-691. https://doi.org/10.1016/j.cageo.2004.03.012
Peters, R. L., Groenendijk, P., Vlam, M., & Zuidema, P. A. (2015). Detecting long-term growth trends using tree rings: A critical evaluation of methods. Global Change Biology, 21(5), 2040-2054. https://doi.org/10.1111/gcb.12826
Peterson, M. L., Doak, D. F., & Morris, W. F. (2019). Incorporating local adaptation into forecasts of species' distribution and abundance under climate change. Global Change Biology, 25(3), 775-793. https://doi.org/10.1111/gcb.14562
Ponocná, T., Spyt, B., Kaczka, R., Büntgen, U., & Treml, V. (2016). Growth trends and climate responses of Norway spruce along elevational gradients in East-Central Europe. Trees - Structure and Function, 30(5), 1633-1646. https://doi.org/10.1007/s00468-016-1396-3
Pretzsch, H., Biber, P., Schütze, G., Uhl, E., & Rötzer, T. (2014). Forest stand growth dynamics in Central Europe have accelerated since 1870. Nature Communications, 5, 1-10. https://doi.org/10.1038/ncomms5967
Pretzsch, H., Grams, T., Häberle, K. H., Pritsch, K., Bauerle, T., & Rötzer, T. (2020). Growth and mortality of Norway spruce and European beech in monospecific and mixed-species stands under natural episodic and experimentally extended drought. Results of the KROOF throughfall exclusion experiment. Trees - Structure and Function, 34(4), 957-970. https://doi.org/10.1007/s00468-020-01973-0
R Core Team. (2019). R: A language and environment for statistical computing (3.5.1). R Foundation for Statistical Computing. Retrieved from http://www.r-project.org/
Rammig, A., Wiedermann, M., Donges, J. F., Babst, F., Von Bloh, W., Frank, D., Thonicke, K., & Mahecha, M. D. (2015). Coincidences of climate extremes and anomalous vegetation responses: Comparing tree ring patterns to simulated productivity. Biogeosciences, 12(2), 373-385. https://doi.org/10.5194/bg-12-373-2015.
Rodríguez, R., Navarro, X., Casas, M. C., Ribalaygua, J., Russo, B., Pouget, L., & Redaño-Rodriguez, A. (2014). Influence of climate change on IDF curves for the metropolitan area of Barcelona (Spain). International Journal of Climatology, 34, 643-654. https://doi.org/10.1002/joc.3712
Rolland, C., Desplanque, C., & Schweingruber, F. H. (2000). Extreme tree rings in spruce (Picea abies [L.] Karst.) and fir (Abies alba Mill.) stands in relation to climate, site, and space in the Southern French and Italian Alps. Arctic, Antarctic, and Alpine Research, 32(1), 1-13.
Rydval, M., & Wilson, R. (2012). The impact of industrial SO2 pollution on North Bohemia conifers. Water, Air, and Soil Pollution, 223(9), 5727-5744. https://doi.org/10.1007/s11270-012-1310-6
Sánchez-Salguero, R., Camarero, J. J., Carrer, M., Gutiérrez, E., Alla, A. Q., Andreu-Hayles, L., Hevia, A., Koutavas, A., Martínez-Sancho, E., Nola, P., Papadopoulos, A., Pasho, E., Toromani, E., Carreira, J. A., & Linares, J. C. (2017). Climate extremes and predicted warming threaten Mediterranean Holocene firs forests refugia. Proceedings of the National Academy of Sciences of the United States of America, 114(47), 10142-10150. https://doi.org/10.1073/pnas.1708109114
Scharnweber, T., Smiljanic, M., Cruz-García, R., Manthey, M., & Wilmking, M. (2020). Tree growth at the end of the 21st century - The extreme years 2018/19 as template for future growth conditions. Environmental Research Letters, 15(7), 074022. https://doi.org/10.1088/1748-9326/ab865d
Schelhaas, M. J., Nabuurs, G. J., & Schuck, A. (2003). Natural disturbances in the European forests in the 19th and 20th centuries. Global Change Biology, 9(11), 1620-1633. https://doi.org/10.1046/j.1365-2486.2003.00684.x
Schuldt, B., Buras, A., Arend, M., Vitasse, Y., Beierkuhnlein, C., Damm, A., Gharun, M., Grams, T. E. E., Hauck, M., Hajek, P., Hartmann, H., Hiltbrunner, E., Hoch, G., Holloway-Phillips, M., Körner, C., Larysch, E., Lübbe, T., Nelson, D. B., Rammig, A., … Kahmen, A. (2020). A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic and Applied Ecology, 45, 86-103. https://doi.org/10.1016/j.baae.2020.04.003
Schurman, J. S., Babst, F., Björklund, J., Rydval, M., Bače, R., Čada, V., Janda, P., Mikolas, M., Saulnier, M., Trotsiuk, V., & Svoboda, M. (2019). The climatic drivers of primary Picea forest growth along the Carpathian arc are changing under rising temperatures. Global Change Biology, 25(9), 3136-3150. https://doi.org/10.1111/gcb.14721
Schweingruber, F. H. (1996). Tree rings and environment dendroecology. Paul Haupt.
Schweingruber, F. H., Eckstein, D., Serre-Bachet, F., & Bräker, O. U. (1990). Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia, 8, 9-38.
Serra-Maluquer, X., Mencuccini, M., & Martínez-Vilalta, J. (2018). Changes in tree resistance, recovery and resilience across three successive extreme droughts in the northeast Iberian Peninsula. Oecologia, 187(1), 343-354. https://doi.org/10.1007/s00442-018-4118-2
Sidor, C. G., Camarero, J. J., Popa, I., Badea, O., Apostol, E. N., & Vlad, R. (2019). Forest vulnerability to extreme climatic events in Romanian Scots pine forests. Science of the Total Environment, 678, 721-727. https://doi.org/10.1016/j.scitotenv.2019.05.021
Silva, L. C. R., Sun, G., Zhu-Barker, X., Liang, Q., Wu, N., & Horwath, W. R. (2016). Tree growth acceleration and expansion of alpine forests: The synergistic effect of atmospheric and edaphic change. Science Advances, 2(8), e1501302. https://doi.org/10.1126/sciadv.1501302
Speer, J. H. (2011). Fundamentals of tree-ring research. The University of Arizona Press. https://doi.org/10.1002/gea.20357
Spiecker, H. (2000). Spruce monocultures in Central Europe - Problems and prospects (Issue 33). European Forest Institute.
Stokes, M. A., & Smiley, L. T. (1998). An introduction to tree-ring dating. The University of Chicago Press, https://doi.org/10.1016/b978-0-444-54304-2.03001-3
Stovall, A., Shugart, H., & Yang, X. (2019). Tree height explains mortality risk during an intense drought. Nature Communications, 10, 4385. https://doi.org/10.1038/s41467-019-12380-6
Suvanto, S., Henttonen, H. M., Nöjd, P., Helama, S., Repo, T., Timonen, M., & Mäkinen, H. (2017). Connecting potential frost damage events identified from meteorological records to radial growth variation in Norway spruce and Scots pine. Trees - Structure and Function, 31(6), 2023-2034. https://doi.org/10.1007/s00468-017-1590-y
Szabó, P., Kuneš, P., Svobodová-Svitavská, H., Švarcová, M. G., Křížová, L., Suchánková, S., Müllerová, J., & Hédl, R. (2017). Using historical ecology to reassess the conservation status of coniferous forests in Central Europe. Conservation Biology, 31(1), 150-160. https://doi.org/10.1111/cobi.12763
Tei, S., Sugimoto, A., Yonenobu, H., Matsuura, Y., Osawa, A., Sato, H., Fujinuma, J., & Maximov, T. (2017). Tree-ring analysis and modeling approaches yield contrary response of circumboreal forest productivity to climate change. Global Change Biology, 23(12), 5179-5188. https://doi.org/10.1111/gcb.13780
Tepley, A., & Veblen, T. T. (2015). Spatiotemporal fire dynamics in mixed-conifer and aspen forests in the San Juan Mountains of southwestern Colorado, USA. Ecological Monographs, 85, 583-603. https://doi.org/10.1890/14-1496.1
Treml, V., Ponocná, T., King, G. M., & Büntgen, U. (2015). A new tree-ring-based summer temperature reconstruction over the last three centuries for east-central Europe. International Journal of Climatology, 35(10), 3160-3171. https://doi.org/10.1002/joc.4201
Trnka, M., Balek, J., Štepánek, P., Zahradnícek, P., Možný, M., Eitzinger, J., Žalud, Z., Formayer, H., Turna, M., Nejedlík, P., Semerádová, D., Hlavinka, P., & Brázdil, R. (2016). Drought trends over part of Central Europe between 1961 and 2014. Climate Research, 70(2-3), 143-160. https://doi.org/10.3354/cr01420
Trotsiuk, V., Hartig, F., Cailleret, M., Babst, F., Forrester, D. I., Baltensweiler, A., Buchmann, N., Bugmann, H., Gessler, A., Gharun, M., Minunno, F., Rigling, A., Rohner, B., Stillhard, J., Thürig, E., Waldner, P., Ferretti, M., Eugster, W., & Schaub, M. (2020). Assessing the response of forest productivity to climate extremes in Switzerland using model-data fusion. Global Change Biology, 26(4), 2463-2476. https://doi.org/10.1111/gcb.15011
Tumajer, J., Altman, J., Štěpánek, P., Treml, V., Doležal, J., & Cienciala, E. (2017). Increasing moisture limitation of Norway spruce in Central Europe revealed by forward modelling of tree growth in tree-ring network. Agricultural and Forest Meteorology, 247, 56-64. https://doi.org/10.1016/j.agrformet.2017.07.015
Tumajer, J., Kašpar, J., Kuželová, H., Shishov, V. V., Tychkov, I. I., Popkova, M. I., Vaganov, E. A., & Treml, V. (2021). Forward modeling reveals multidecadal trends in cambial kinetics and phenology at treeline. Frontiers in Plant Science, 12, 613643. https://doi.org/10.3389/fpls.2021.613643
Van der Maaten-Theunissen, M., van der Maaten, E., & Bouriaud, O. (2015). PointRes: An R package to analyze pointer years and components of resilience. Dendrochronologia, 35, 34-38. https://doi.org/10.1016/j.dendro.2015.05.006
Van Kleunen, M., & Fischer, M. (2007). Progress in the detection of costs of phenotypic platicity in plants. New Phytologist, 176, 727-730. https://doi.org/10.1111/j.1469-8137.2007.02296.x
Vanoni, M., Bugmann, H., Nötzli, M., & Bigler, C. (2016). Quantifying the effects of drought on abrupt growth decreases of major tree species in Switzerland. Ecology and Evolution, 6(11), 3555-3570. https://doi.org/10.1002/ece3.2146
Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696-1718. https://doi.org/10.1175/2009JCLI2909.1
Vieira, J., Campelo, F., & Nabais, C. (2009). Age-dependent responses of tree-ring growth and intra-annual density fluctuations of Pinus pinaster to Mediterranean climate. Trees - Structure and Function, 23(2), 257-265. https://doi.org/10.1007/s00468-008-0273-0
Vitali, V., Büntgen, U., & Bauhus, J. (2017). Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany. Global Change Biology, 23(12), 5108-5119. https://doi.org/10.1111/gcb.13774
Vitasse, Y., Bottero, A., Cailleret, M., Bigler, C., Fonti, P., Gessler, A., Lévesque, M., Rohner, B., Weber, P., Rigling, A., & Wohlgemuth, T. (2019). Contrasting resistance and resilience to extreme drought and late spring frost in five major European tree species. Global Change Biology, 25(11), 3781-3792. https://doi.org/10.1111/gcb.14803
Wood, S. N. (2017). Generalized additive models: An introduction with R (2nd ed.). Chapman and Hall/CRC.
Zang, C., Hartl-Meier, C., Dittmar, C., Rothe, A., & Menzel, A. (2014). Patterns of drought tolerance in major European temperate forest trees: Climatic drivers and levels of variability. Global Change Biology, 20(12), 3767-3779. https://doi.org/10.1111/gcb.12637
Zang, C., Pretzsch, H., & Rothe, A. (2012). Size-dependent responses to summer drought in Scots pine, Norway spruce and common oak. Trees - Structure and Function, 26(2), 557-569. https://doi.org/10.1007/s00468-011-0617-z
Increasing volatility of reconstructed Morava River warm-season flow, Czech Republic