Multiple radiations of spiny mice (Rodentia: Acomys) in dry open habitats of Afro-Arabia: evidence from a multi-locus phylogeny
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30832573
PubMed Central
PMC6399835
DOI
10.1186/s12862-019-1380-9
PII: 10.1186/s12862-019-1380-9
Knihovny.cz E-zdroje
- Klíčová slova
- Acomys, Africa, Arabia, Biogeography, Plio-Pleistocene, Sahara, Savanna, Somali-Masai, Zambezian savanna,
- MeSH
- biologická evoluce MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- fylogeografie * MeSH
- mitochondriální DNA chemie genetika MeSH
- Murinae klasifikace genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Afrika MeSH
- Arábie MeSH
- severní Afrika MeSH
- Střední východ MeSH
- východní Afrika MeSH
- západní Afrika MeSH
- Názvy látek
- mitochondriální DNA MeSH
BACKGROUND: Spiny mice of the genus Acomys are distributed mainly in dry open habitats in Africa and the Middle East, and they are widely used as model taxa for various biological disciplines (e.g. ecology, physiology and evolutionary biology). Despite their importance, large distribution and abundance in local communities, the phylogeny and the species limits in the genus are poorly resolved, and this is especially true for sub-Saharan taxa. The main aims of this study are (1) to reconstruct phylogenetic relationships of Acomys based on the largest available multilocus dataset (700 genotyped individuals from 282 localities), (2) to identify the main biogeographical divides in the distribution of Acomys diversity in dry open habitats in Afro-Arabia, (3) to reconstruct the historical biogeography of the genus, and finally (4) to estimate the species richness of the genus by application of the phylogenetic species concept. RESULTS: The multilocus phylogeny based on four genetic markers shows presence of five major groups of Acomys called here subspinosus, spinosissimus, russatus, wilsoni and cahirinus groups. Three of these major groups (spinosissimus, wilsoni and cahirinus) are further sub-structured to phylogenetic lineages with predominantly parapatric distributions. Combination of alternative species delimitation methods suggests the existence of 26 molecular operational taxonomic units (MOTUs), potentially corresponding to separate species. The highest genetic diversity was found in Eastern Africa. The origin of the genus Acomys is dated to late Miocene (ca. 8.7 Ma), when the first split occurred between spiny mice of eastern (Somali-Masai) and south-eastern (Zambezian) savannas. Further diversification, mostly in Plio-Pleistocene, and the current distribution of Acomys were influenced by the interplay of global climatic factors (e.g., Messinian salinity crisis, intensification of Northern Hemisphere glaciation) with local geomorphology (mountain chains, aridity belts, water bodies). Combination of divergence dating, species distribution modelling and historical biogeography analysis suggests repeated "out-of-East-Africa" dispersal events into western Africa, the Mediterranean region and Arabia. CONCLUSIONS: The genus Acomys is very suitable model for historical phylogeographic and biogeographic reconstructions of dry non-forested environments in Afro-Arabia. We provide the most thorough phylogenetic reconstruction of the genus and identify major factors that influenced its evolutionary history since the late Miocene. We also highlight the urgent need of integrative taxonomic revision of east African taxa.
A N Severtsov Institute of Ecology and Evolution RAS 119071 Moscow Russia
Department of Botany and Zoology Faculty of Science Masaryk University 602 00 Brno Czech Republic
Department of Parasitology Faculty of Science Charles University 128 44 Prague Czech Republic
Department of Zoology Faculty of Science Charles University 128 44 Prague Czech Republic
Department of Zoology National Museum 115 79 Prague Czech Republic
Institute of Vertebrate Biology of the Czech Academy of Sciences 603 65 Brno Czech Republic
Zobrazit více v PubMed
Mayaux P, Bartholomé E, Fritz S, Belward A. A new land-cover map of Africa for the year 2000. J Biogeogr. 2004;31:861–877.
Sayre R, Comer P, Hak J, Josse C, Bow J, Warner H, Larwanou M, Kelbessa E, Bekele T, Kehl H, Amena R, Andriamasimanana R, Ba T, Benson L, Boucher T, Brown M, Cress J, Dassering O, Friesen B, Gachathi F, Houcine S, Keita M, Khamala E, Marangu D, Mokua F, Morou B, Mucina L, Mugisha S, Mwavu E, Rutherford M, Sanou P, Syampungani S, Tomor B, Vall A, Weghe JV, Wangui E, Waruingi L. A new map of standardized terrestrial ecosystems of Africa. Washington DC: Association of American Geographers; 2013.
Linder HP, de Klerk HM, Born J, Burgess ND, Fjeldså J, Rahbek C. The partitioning of Africa: statistically defined biogeographical regions in sub-Saharan Africa. J Biogeogr. 2012;39:1189–1205.
Maslin MA, Trauth MH. Plio-Pleistocene east African pulsed climate variability and its influence on early human evolution. In: Grine FE, Leakey RE, Fleagle JG, editors. The first humans - origins of the genus homo. New York: Springer Verlag; 2009. pp. 151–158.
Kingston JD, Deino AL, Edgar RK, Hill A. Astronomically forced climate change in the Kenyan Rift Valley 2.7–2.55 Ma: implications for the evolution of early hominin ecosystems. J Hum Evol. 2007;53:487–503. PubMed
Maslin MA, Christensen B. Tectonics, orbital forcing, global climate change, and human evolution in Africa: introduction to the African paleoclimate special volume. J Hum Evol. 2007;53:443–464. PubMed
Pickford M. Uplift of the roof of Africa and its bearing on the evolution of mankind. Hum Evol. 1990;5:1–20.
Prömmel K, Cubasch U, Kaspar F. A regional climate model study of the impact of tectonic and orbital forcing on African precipitation and vegetation. Palaeogeogr Palaeoclimatol Palaeoecol. 2013;369:154–162.
Cerling TE, Harris JM, Macfadden BJ, Leakey MG, Quadek J, Eisenmann V, Ehleringer JR. Global vegetation change through the Miocene/Pliocene boundary. Nature. 1997;389:153–158.
Cerling TE, Ehleringer JR, Harris JM. Carbon dioxide starvation, the development of C4 ecosystems, and mammalian evolution. Philos Trans R Soc B Biol Sci. 1998;353:159–171. PubMed PMC
Huang W, Takebayashi N, Qi Y, Hickerson MJ. MTML-msBayes: approximate Bayesian comparative phylogeographic inference from multiple taxa and multiple loci with rate heterogeneity. BMC Bioinf. 2011;12:1. PubMed PMC
Le Houérou HN. Outline of the biological history of the Sahara. J Arid Environ. 1992;22:3–30.
Swezey CS. Cenozoic stratigraphy of the Sahara. Northern Africa J African Earth Sci. 2009;53:89121.
Brito JC, Godinho R, Martínez-Freiría F, Pleguezuelos JM, Rebelo H, Santos X, Vale CG, Velo-Antón G, Boratyński Z, Carvalho SB, Ferreira S, Gonçalves DV, Silva TL, Tarroso P, Campos JC, Leite JV, Nogueira J, Alvares F, Sillero N, Sow AS, Fahd S, Crochet P-A, Carranza S. Unravelling biodiversity, evolution and threats to conservation in the Sahara-Sahel. Biol Rev Camb Philos Soc. 2014;89:215–231. PubMed
Gonçalves DV, Martínez-Freiría F, Crochet PA, Geniez P, Carranza S, Brito JC. The role of climatic cycles and trans-Saharan migration corridors in species diversification: biogeography of Psammophis schokari group in North Africa. Mol Phylogenet Evol. 2018;118:64–74. PubMed
Denys C, Taylor PJ, Aplin KP. Family Muridae. In: Wilson DE, Lacher TE Jr, Mittermeier RA, editors. Hadbook of the mammals of the world, volume 7: rodents II. Barcelona: Lynx Edicions; 2017.
Carere C, Casetti R, De Acetis L, Perretta G, Cirulli F, Alleva E. Behavioural and nociceptive response in male and female spiny mice (Acomys cahirinus) upon exposure to snake odour. Behav Process. 1999;47:1–10. PubMed
Frynta D, Fraňková M, Čížková B, Skarlandtová H, Galeštoková K, Průšová K, Šmilauer P, Šumbera R. Social and life history correlates of litter size in captive colonies of precocial spiny mice (Acomys) Acta Theriol (Warsz) 2011;56:289–295.
Gutman R, Dayan T. Temporal partitioning: an experiment with two species of spiny mice. Ecol. 2005;86:164–173.
Haim A, Yedidia I, Haim D, Zisapel N. Photoperiodicity in daily rhythms of body temperature, food and energy intake of the golden spiny mouse (Acomys russatus) Isr J Zool. 1994;40:145–150.
Kronfeld-Schor N, Shargal E, Haim A, Dayan T, Zisapel N, Heldmaier G. Temporal partitioning among diurnally and nocturnally active desert spiny mice: energy and water turnover costs. J Therm Biol. 2001;26:139–142. PubMed
Seifert AW, Kiama SG, Seifert MG, Goheen JR, Palmer TM, Maden M. Skin shedding and tissue regeneration in African spiny mice (Acomys) Nature. 2012;489:561–565. PubMed PMC
Ehrhardt N, Heldmaier G, Exner C. Adaptive mechanisms during food restriction in Acomys russatus: the use of torpor for desert survival. J Comp Physiol B. 2005;175:193–200. PubMed
Horowitz M, Borut A. The spiny mous (Acomys cahirinus) - a rodent prototype for studying plasma volume regulation during thermal dehydration. Isr J Zool. 1994;40:117–125.
Ivlev YF, Lavrenchenko LA, OF Chernova, Bekele A. Response to overheating in spiny mice (the genus Acomys) from arid regions in northwestern Ethiopia. Dokl Biol Sci. 2011;440:335–9. PubMed
Weissenberg S, Shkolnik A. Metabolic rate and water economy in the desert and Mediterranean populations of the common spiny mouse (Acomys cahirinus) in Israel. Isr J Zool. 1994;40:135–143.
Dieterlen F. Vergleichende Untersuchungen zur Ontogenese von Stachelmaus (Acomys) und Wanderratte (Rattus norvegicus). Beiträge zum Nesthocker-Nestflüchter-Prolem bei Negetieren. Z Säugetierkd. 1963;28:193–227.
Hadid Y, Pavlicek T, Beiles A, Ianovici R, Raz S, Nevo E. Sympatric incipient speciation of spiny mice Acomys at “Evolution Canyon,” Israel. Proc Natl Acad Sci. 2014;111:1043–1048. PubMed PMC
Tučková V, Šumbera R, Čížková B. Alloparental behaviour in Sinai spiny mice Acomys dimidiatus: a case of misdirected parental care? Behav Ecol Sociobiol. 2016;70:437–447.
Barome PO, Monnerot M, Gautun JC. Intrageneric phylogeny of Acomys (Rodentia, Muridae) using mitochondrial gene cytochrome b. Mol Phylogenet Evol. 1998;9:560–566. PubMed
Barome PO, Monnerot M, Gautun JC. Phylogeny of the genus Acomys (Rodentia, Muridae) based on the cytochrome b mitochondrial gene: implications on taxonomy and phylogeography. Mammalia. 2000;64:423–438.
Barome PO, Lymberakis P, Monnerot M, Gautun JC. Cytochrome b sequences reveal Acomys minous (Rodentia, Muridae) paraphyly and answer the question about the ancestral karyotype of Acomys dimidiatus. Mol Phylogenet Evol. 2001;18:37–46. PubMed
Frynta D, Palupčiková K, Bellinvia E, Benda P, Skarlantová H, Schwarzová L, Modrý D. Phylogenetic relationships within the cahirinus-dimidiatus group of the genus Acomys (Rodentia : Muridae): new mitochondrial lineages from Sahara, Iran and the Arabian Peninsula. Zootaxa. 2010;2660:46–56.
Ellerman JR. Family muridae, volume II. London: British Museum (Natural History); 1941. The Families and Genera of Living Rodents.
Honacki JH, Kinman KE, Koeppl JW. Mammal species of the world: a taxonomic and geographic reference. Kansas: Allen Press Inc. and The Association of Systematics Collections; 1982.
Monadjem A, Taylor P, Denys C, Cotterill FPD. Rodents of sub-Saharan Africa. A biogeographic and taxonomic synthesis. Berlin, Boston: De Gruyter; 2015.
Musser GG, Carleton MD. Superfamily Muroidea. In: Wilson DE, DAM R, editors. Mammal Species of the World. A Taxonomic and Geographic Reference. Baltimore: The Johns Hopkins University Press; 2005. pp. 894–1531.
Setzer HW. Genus Acomys. In: Meester J, Setzer HW, editors. The mammals of Africa: an identification manual. Washington: Smithsonian Institution Press; 1975. pp. 1–2.
Chevret P, Denys C, Jaeger JJ, Michaux J, Catzeflis FM. Molecular evidence that the spiny mouse (Acomys) is more closely related to gerbils (Gerbillinae) than to true mice (Murinae) Proc Natl Acad Sci U S A. 1993;90:3433–3436. PubMed PMC
Matthey R. Cytogenetique et taxonomie du genre Acomys A. percivali Dollman et A. wilsoni Thomas, especes D’Abyssinie. Mammalia. 1968;32:621–627.
Barome PO, Volobouev V, Monnerot M, Mfune JK, Chitaukali W, Gautun JC, Denys C. Phylogeny of Acomys spinosissimus (Rodentia, Muridae) from North Malawi and Tanzania: evidence from morphological and molecular analysis. Biol J Linn Soc. 2001;73:321–340.
Mgode GF. Application of a multidisciplinary approach to the systematics of Acomys (Rodentia: Muridae) from northern Tanzania. PhD thesis: University of Pretoria, Zoology and Entomology; 2006. http://www.suaire.sua.ac.tz:8080/xmlui/bitstream/handle/123456789/1433/Mgode18.pdf?sequence=1&isAllowed=y. Accessed 8 Feb 2019.
Nicolas V, Granjon L, Duplantier JM, Cruaud C, Dobigny G. Phylogeography of spiny mice (genus Acomys, Rodentia: Muridae) from the south-western margin of the sahara with taxonomic implications. Biol J Linn Soc. 2009;98:29–46.
Petružela J, Šumbera R, Aghová T, Bryjová A, Katakweba AS, Sabuni CA, Chitaukali WN, Bryja J. Spiny mice of the Zambezian bioregion–phylogeny, biogeography and ecological differentiation within the Acomys spinosissimus complex. Mamm Biol. 2018;91:79–90.
Verheyen W, Hulselmans J, Wendelen W, Leirs H, Corti M, Backeljau T, Verheyen E. Contribution to the systematics and zoogeography of the east-African Acomys spinosissimus Peters 1852 species complex and the description of two new species (Rodentia: Muridae) Zootaxa. 2011;3059:1–35.
Alhajeri BH, Hunt OJ, Steppan SJ. Molecular systematics of gerbils and deomyines (Rodentia: Gerbillinae, Deomyinae) and a test of desert adaptation in the tympanic bulla. J Zool Syst Evol Res. 2015;53:312–30.
Bryja J, Kostin D, Meheretu Y, Šumbera R, Bryjová A, Kasso M, Mikula O, Lavrenchenko LA. Reticulate Pleistocene evolution of Ethiopian rodent genus along remarkable altitudinal gradient. Mol Phylogenet Evol. 2018;118:75–87. PubMed
Correa C, Vásquez D, Castro-Carrasco C, Zúñiga-Reinoso Á, Ortiz JC, Palma RE. Species delimitation in frogs from south American temperate forests: the case of Eupsophus, a taxonomically complex genus with high phenotypic variation. PLoS One. 2017;12:e0181026. PubMed PMC
Sukumaran J, Knowles LL. Multispecies coalescent delimits structure, not species. Proc Natl Acad Sci U S A. 2017;114:1607–1612. PubMed PMC
Haughton CL, Gawriluk TR, Seifert AW. The biology and husbandry of the African spiny mouse (Acomys cahirinus) and the research uses of a laboratory Colony. J Am Assoc Lab Anim Sci. 2016;55:9–17. PubMed PMC
Denys C, Gautun J-C, Tranier M, Volobouev V. Evolution of the genus Acomys (Rodentia, Muridae) from dental and chromosomal patterns. Isr J Zool. 1994;40:215–246.
Bray TC, Bennett NC, Mohammed OB, Alagaili AN. On the genetic diversity of spiny mice (genus Acomys) and gerbils (genus Gerbillus) in the Arabian peninsula. Zool Middle East. 2013;59:283–288.
Fernandes CA, Rohling EJ, Siddall M. Absence of post-Miocene Red Sea land bridges: biogeographic implications. J Biogeogr. 2006;33:961–966.
Giagia-Athanasopoulou EB, Rovatsos MTH, Mitsainas GP, Martimianakis S, Lymberakis P, Angelou LXD, Marchal JA, Sánchez A. New data on the evolution of the Cretan spiny mouse, Acomys minous (Rodentia: Murinae), shed light on the phylogenetic relationships in the cahirinus group. Biol J Linn Soc. 2011;102:498–509.
Brouat C, Tatard C, Bã K, Cosson J-F, Dobigny G, Fichet-Calvet E, Granjon L, Lecompte E, Loiseau A, Mouline K, Piry S, Duplantier J-M. Phylogeography of the Guinea multimammate mouse (Mastomys erythroleucus): a case study for Sahelian species in West Africa. J Biogeogr. 2009;36:2237–2250.
Dobigny G, Tatard C, Gauthier P, Ba K, Duplantier J, Granjon L, Kergoat GJ. Mitochondrial and Nuclear Genes-Based Phylogeography of Arvicanthis niloticus (Murinae) and Sub-Saharan Open Habitats Pleistocene History. PLoS One. 2013; 10.1371/journal.pone.0077815. PubMed DOI PMC
Granjon L, Colangelo P, Tatard C, Colyn M, Dobigny G, Nicolas V. Intrageneric relationships within Gerbilliscus (Rodentia, Muridae, Gerbillinae), with characterization of an additional west African species. Zootaxa. 2012;25:1–25.
Kingdon J. The Kingdon field guide to African mammals. 2. London: Bloomsbury Publishing Plc; 2015.
Douady CJ, Catzeflis F, Raman J, Springer MS, Stanhope MJ. The Sahara as a vicariant agent, and the role of Miocene climatic events, in the diversification of the mammalian order Macroscelidea (elephant shrews) Proc Natl Acad Sci U S A. 2003;100:8325–8330. PubMed PMC
Franck P, Garnery L, Loiseau A, Oldroyd BP, Hepburn HR, Solignac M, Cornuet JM. Genetic diversity of the honeybee in Africa: microsatellite and mitochondrial data. Heredity. 2001;86:420–430. PubMed
Guillaumet A, Crochet PA, Pons JM. Climate-driven diversification in two widespread Galerida larks. BMC Evol Biol. 2008;8:32. PubMed PMC
Rosevear D. The rodents of West Africa. London: Trustees of the British Museum Natural History; 1969.
Sicard B, Tranier M. Caractères et répartition de trois phénotypes d’Acomys (Rodentia, Muridae) au Burkina Faso. Mammalia. 1996;60:53–68.
Diamond JM, Hamilton AC. The distribution of forest passerine birds and quaternary climatic change in tropical Africa. J Zool. 1980;191:379–402.
Kingdon J. Where have the colonists come from? A zoogeographical examination of some mammalian isolates in eastern Africa. Afr J Ecol. 1981;19:115–124.
Jesus FF, Wilkins JF, Solferini VN, Wakeley J. Expected coalescence times and segregating sites in a model of glacial cycles. Genet Mol Res. 2006;5:466–474. PubMed
Colangelo P, Verheyen E, Leirs H, Tatard C, Denys C, Dobigny G, Duplantier JM, Brouat C, Granjon L, Lecompte E. A mitochondrial phylogeographic scenario for the most widespread African rodent, Mastomys natalensis. Biol J Linnean Soc. 2013;108:901–916.
Bryja J, Mikula O, Šumbera R, Meheretu Y, Aghová T, Lavrenchenko LA, Mazoch V, Oguge N, Mbau JS, Welegerima K, Amundala N, Colyn M, Leirs H, Verheyen E. Pan-African phylogeny of Mus (subgenus Nannomys) reveals one of the most successful mammal radiations in Africa. BMC Evol Biol. 2014;14:256–276. PubMed PMC
Bryja J, Konvičková H, Bryjová A, Mikula O, Makundi R, Chitaukali WN, Šumbera R. Differentiation underground: range-wide multilocus genetic structure of the silvery mole-rat does not support current taxonomy based on mitochondrial sequences. Mamm Biol. 2018;93:82–92.
Mazoch V, Mikula O, Bryja J, Konvičková H, Russo IR, Verheyen E, Šumbera R. Phylogeography of a widespread sub-Saharan murid rodent Aethomys chrysophilus: the role of geographic barriers and paleoclimate in the Zambezian bioregion. Mammalia. 2018;82:373–387.
Mikula O, Šumbera R, Aghova T, Mbau JS, Katakweba AS, Sabuni CA, Bryja J. Evolutionary history and species diversity of African pouched mice (Rodentia: Nesomyidae: Saccostomus) Zool Scr. 2016;45:595–617.
Aghová T, Šumbera R, Piálek L, Mikula O, Mcdonough MM, Lavrenchenko LA, Meheretu Y, Mbau JS, Bryja J. Multilocus phylogeny of east African gerbils (Rodentia, Gerbilliscus) illuminates the history of the Somali-Masai savanna. J Biogeogr. 2017;44:2295–2307.
Trauth MH, Maslin MA, Deino AL, Junginger A, Lesoloyia M, Odada EO, Olago DO, Olaka LA, Strecker MR, Tiedemann R. Human evolution in a variable environment: the amplifier lakes of eastern Africa. Quat Sci Rev. 2010;29:2981–2988.
Bartáková V, Reichard M, Blažek R, Polačik M, Bryja J. Terrestrial fishes: rivers are barriers to gene flow in annual fishes from the African savanna. J Biogeogr. 2015;42:1832–1844.
McDonough MM, Šumbera R, Mazoch V, Ferguson AW, Phillips CD, Bryja J. Multilocus phylogeography of a widespread savanna-woodland-adapted rodent reveals the influence of Pleistocene geomorphology and climate change in Africa’s Zambezi region. Mol Ecol. 2015;24:5248–5266. PubMed
Keller C, Roos C, Groeneveld LF, Fischer J, Zinner D. Introgressive hybridization in southern African baboons shapes patterns of mtDNA variation. Am J Phys Anthropol. 2010;142:125–136. PubMed
Cotterill FPD. A biogeographic review of tsessebe antelopes Damaliscus lunatus (Bovidae: Alcelaphini) in south-Central Africa. Durban Mus Novit. 2003;28:45–55.
Bryja J, Granjon L, Dobigny G, Patzenhauerová H, Konečný A, Duplantier J-M, Gauthier P, Colyn M, Durnez L, Lalis A, Nicolas V. Plio-Pleistocene history of west African Sudanian savanna and the phylogeography of the Praomys daltoni complex (Rodentia): the environment/geography/genetic interplay. Mol Ecol. 2010;19:4783–4799. PubMed
Jacquet F, Denys C, Verheyen E, Bryja J, Hutterer R, Peterhans JCK, Stanley WT, Goodman SM, Couloux A, Colyn M, Nicolas V. Phylogeography and evolutionary history of the Crocidura olivieri complex (Mammalia, Soricomorpha): from a forest origin to broad ecological expansion across Africa. BMC Evol Biol. 2015;15:1–15. PubMed PMC
Aghová T, Kimura Y, Bryja J, Dobigny G, Granjon L, Kergoat GJ. Fossils know it best: using a new set of fossil calibrations to improve the temporal phylogenetic framework of murid rodents (Rodentia: Muridae) Mol Phylogenet Evol. 2018;128:98–111. PubMed
Steppan SJ, Schenk JJ. Muroid rodent phylogenetics: 900-species tree reveals increasing diversification rates. PLoS One. 2017;12:e0183070. doi: 10.1371/journal.pone.0183070. PubMed DOI PMC
Ellerman JR, TCS M-S. A Checklist of Palaeartic and Indian Mammals, 1758-1946. London: Trustees of the British museum (natural history); 1951.
Pickford M. Age of supergene ore bodies at berg Aukas and Harasib 3a, Namibia. Commun Geol Surv Namibia. 1992;8:147–150.
Geraads D. Rongeurs du Miocene superieur de Chorora (Ethiopie): Dendromuridae, Muridae et conclusions. Palaeovertebrata. 2001;30:89–109.
Bryja J, Šumbera R, Peterhans K, Julian C, Aghová T, Bryjová A, Mikula O, Nicolas V, Denys C, Verheyen E. Evolutionary history of the thicket rats (genus Grammomys) mirrors the evolution of African forests since late Miocene. J Biogeogr. 2017;44:182–94.
Couvreur TL, Chatrou LW, Sosef MS, Richardson JE. Molecular phylogenetics reveal multiple tertiary vicariance origins of the African rain forest trees. BMC Biol. 2008;6:54. PubMed PMC
Lorenzen ED, Heller R, Siegismund HR. Comparative phylogeography of African savannah ungulates. Mol Ecol. 2012;21:3656–3670. PubMed
Randi E, D’Huart JP, Lucchini V, Aman R. Evidence of two genetically deeply divergent species of warhthog, Phacochoerus africanus and P. aethiopicus (Artiodactyla: Suiformes) in eastern Africa. Mamm Biol. 2002;67:91–96.
Brown DM, Brenneman RA, Koepfli K-P, Pollinger JP, Milá B, Georgiadis NJ, Louis EE, Grether GF, Jacobs DK, Wayne RK. Extensive population genetic structure in the giraffe. BMC Biol. 2007;5:57. PubMed PMC
Fennessy J, Bidon T, Reuss F, Kumar V, Elkan P, Nilsson MA, Vamberger M, Fritz U, Janke A. Multi-locus analyses reveal four giraffe species instead of one. Curr Biol. 2016;26:1–7. PubMed
Hsü KJ, Giovanoli F. Messinian event in the black sea. Palaeogeogr Palaeoclimatol Palaeoecol. 1979;29:75–93.
Hodell DA, Curtis JH, Sierro FJ, Raymo ME. Correlation of Late Miocene to early Pliocene sequences between the Mediterranean and North Atlantic. Paleoceanography. 2001;16:164–178.
Maslin MA, Haug GH, Sarnthein M, Tiedemann R, Erlenkeuser H, Stax R. 21. Northwest pacific site 882: The initiation of Northern Hemisphere Glaciation. In: Rea DK, Basov IA, Scholl DW, Allan JF, editors. Proceedings of the Ocean Drilling Program Vol 145. 1995. pp. 179–194.
Maslin MA, Li XS, Loutre MF, Berger A. The contribution of orbital forcing to the progressive intensification of northern hemisphere glaciation. Quat Sci Rev. 1998;17:411–426.
Ravelo AC, Andreasen DH, Lyle M, Lyle AO, Wara MW. Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature. 2004;429:263–270. PubMed
Berger WH, Jansen E. Mid-Pleistocene climate shift: the Nansen connection. Geophys Monogr Ser. 1994;85:295–311.
Potts R. Hominin evolution in setings of strong environmental variability. Quat Sci Rev. 2013;73:1–13.
Kebede F, Rosenbom S, Khalatbari L, Moehlman PD, Beja-Pereira A, Bekele A. Genetic diversity of the Ethiopian Grevy’s zebra (Equus grevyi) populations that includes a unique population of the Alledeghi plain. Mitochondrial DNA A DNA Mapp Seq Anal. 2016;27:397–400. PubMed
Baker RJ, Bradley RD. Speciation in mammals and the genetic species concept. J Mammal. 2006;87:643–662. PubMed PMC
Groves CP. The nature of species: a rejoinder to Zachos et al. Mamm Biol. 2013;78:7–9.
Dippenaar NJ, Rautenbach IL. Morphometrics and karyology of the southern African species of the genus Acomys I. Geoffroy saint-Hilaire, 1838 (Rodentia: Muridae) Ann Transvaal Museum. 1986;34:129–183.
Matthey R. Etudes de cytogenetique Sur des Murinae Africains appartenant aux genres Arvicanthis, Acomys et Mastomys (Rodentia) Mammalia. 1965;29:228–249.
Janecek LL, Schlitter DA, Rautenbach IL. A genetic comparison of spiny mice, genus Acomys. Am Soc Mammal. 1991;72:542–552.
Musser G, Carleton M. Family Muridae. In: Wilson DE, Reeder DM, editors. Mammal species of the world. Washington DC: Smithsonian Institution Press; 1993.
Nevo E. Natural selection of body size differentiation in spiny mice, Acomys. Z Säugetierkd. 1989;54:81–99.
Corti M, Castiglia R, Colangelo P, Capanna E, Beolchini F, Bekele A, Oguge N, Makundi RH, Sichilima AM, Leirs H, Verheyen W, Vergagen R. Cytotaxonomy of rodent species from Ethiopia, Kenya, Tanzania and Zambia. Belgian J Zool. 2005;135:197–216.
Sokolov VE, Orlov VN, Baskevich MI, Bekele A, Mebrate A. A karyological study of the spiny mouse Acomys Geoffroy 1838 (Rodentia, Muridae) along the Ethiopian Rift Valley. Trop Zool. 1993;6:227–235.
Petter F. Eléments d’une révision des Acomys africains. Un sous-genre nouveau, Peracomys Petter and Roche, 1981 (Rongeurs, Muridés) Ann Mus R Afr Cent Sci Zool. 1983;237:109–119.
Volobouev VT, Gautun JC, Tranier M. Chromosome evolution in the genus Acomys (Rodentia, Muridae): chromosome banding analysis of Acomys cahirinus. Mammalia. 1996;60:217–222.
Volobouev V, Auffray JC, Debat V, Denys C, Gautun JC. Species delimitation in the Acomys cahirinus – dimidiatus complex (Rodentia, Muridae) inferred from chromosomal. Biol J Linn Soc. 2007;91:203–214.
Lavrenchenko LA, Kruskop SV, Bekele A, Belay G, Morozov PN, Ivlev YF, Warshavsky AA. Mammals of the Babille elephant sanctuary (eastern Ethiopia) Russ J Theriol. 2010;9:47–60.
Lavrenchenko LA, Nadjafova RS, Bulatova NS. Three new karyotypes extend a Robertsonian fan in Ethiopian spiny mice of the genus Acomys I. Geoffroy, 1838 (Mammalia, Rodentia) Comp Cytogenet. 2011;5:423–431. PubMed PMC
Hollister N. East African mammals in the United States National Museum. II. Rodentia, Lagomorpha and Tubulidentata. Bull U S Natn Mus. 1919;99:1–184.
Kunze B, Dieterlen F, Traut W, Winking H. Karyotype relationship among four species of spiny mice (Acomys, Rodentia) Z Säugetierkd. 1999;64:220–229.
Happold DCD, editor. Volume 3: Rodents, Hares and Rabbits. Mammals of Africa. London: Bloomsbury Publishing; 2013. p. 789.
Granjon L, Duplantier JM. Les Rongeurs de l’Afrique sahélo-soudanienne. Marseille: Editions de l’IRD (Collection Faune et Flore tropicales); 2009.
Gautun JC, Sankhon I, Tranier M. Nouvelle contribution à la connaissance des rongeurs du massif guinéen des monts Nimba (Afrique occidentale). Systématique et aperçu quantitatif. Mammalia. 1986;50:205–217.
Morrison-Scott TCS. The identity of the Acomys megalotis (Lichtenstein), described from Arabia. Ann Mag Nat Hist. 1939;11:238–240.
Setzer HW. The spiny mice (Acomys) of Egypt. J Egypt Public Health Assoc. 1959;34:93–101.
Ellerman JR, Morrison-Scott TCS, Hayman RW. Southern African mammals. London: British Museum; 1953.
Yalden DW, Largen MJ, Kock D. Catalogue of the mammals of Ethiopia. Ital J Zool. 1976;1:1–118.
IUCN The IUCN red list of threatened species. Version 2017–3. 2017. http://www.iucnredlist.org. Accessed 17 Dec 2017.
Ducroz JF, Volobouev V, Granjon L. A molecular perspective on the systematics and evolution of the genus Arvicanthis (Rodentia, Muridae): inferences from complete cytochrome b gene sequences. Mol Phylogenet Evol. 1998;10:104–117. PubMed
Bellinvia E. A phylogenetic study of the genus Apodemus by sequencing the mitochondrial DNA control region. J Zool Syst Evol Res. 2004;42:289–297.
Stanhope MJ, Czelusniak J, Si JS, Nickerson J, Goodman M. A molecular perspective on mammalian evolution from the gene encoding interphotoreceptor retinoid binding protein, with convincing evidence for bat monophyly. Mol Phylogenet Evol. 1992;1:148–160. PubMed
Teeling EC, Scally M, Kao DJ, Romagnoli ML, Springer MS, Stanhope MJ. Molecular evidence regarding the origin of echolocation and flight in bats. Nature. 2000;403:188–192. PubMed
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. PubMed PMC
Maddison WP, Maddison DR. Mesquite: a modular system for evolutionary analysis. Version 3.31. 2017.
Nylander JAA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey JL. Bayesian phylogenetic analysis of combined data. Syst Biol. 2004;53:47–67. PubMed
Lanfear R, Calcott B, Ho SY, Guindon S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol. 2012;29:1695–1701. PubMed
Ripplinger J, Sullivan J. Does choice in model selection affect maximum likelihood analysis? Syst Biol. 2008;57:76–85. PubMed
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. PubMed PMC
Hillis DM, Bull JJ. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol. 1993;42:182–192.
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–542. PubMed PMC
Erixon P, Svennblad B, Britton T, Oxelman B. Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. Syst Biol. 2003;52:665–673. PubMed
Carstens BC, Pelletier TA, Reid NM, Satler JD. How to fail at species delimitation. Mol Ecol. 2013;22:4369–4383. PubMed
Puillandre N, Lambert A, Brouillet S, Achaz G. ABGD, automatic barcode gap discovery for primary species delimitation. Mol Ecol. 2012;21:1864–1877. PubMed
Zhang J, Kapli P, Pavlidis P, Stamatakis A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics. 2013;29:2869–2876. PubMed PMC
Jones G. Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. J Mat Biol. 2017;74:447–467. PubMed
Masters BC, Fan V, Ross HA. Species delimitation – a geneious plugin for the exploration of species boundaries. Mol Ecol Resoursces. 2011;11:154–7. PubMed
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. PubMed PMC
Kapli P, Lutteropp S, Zhang J, Kobert K, Pavlidis P, Stamatakis A, Flouri T. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics. 2017;33:1630–1638. PubMed PMC
Drummond AJ, Bouckaert RR. Bayesian evolutionary analysis with BEAST. Cambridge: Cambridge University Press; 2015.
Jones G, Aydin Z, Oxelman B. DISSECT: an assignment-free Bayesian discovery method for species delimitation under the multispecies coalescent. Bioinformatics. 2015;31:991–998. PubMed
Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, Drummond AJ. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2014;10:e1003537. PubMed PMC
Rambaut A, Drummond AJ. LogCombiner v2.4.7. 2017.
Jones G. Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. J Math Biol. 2017;74:447–467. PubMed
Bouckaert RR. DensiTree: making sense of sets of phylogenetic trees. Bioinformatics. 2010;26:1372–1373. PubMed
Senut B, Pickford M, Mein P, Conroy G, Van Couvering J. Discovery of 12 new Late Cainozoic fossiliferous sites in palaeokarsts of the Otavi Mountains, Namibia. Comptes rendus de l’Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l'univers. Sci Terre. 1992;314:727–733.
Geraads D. Plio-pleistocene mammalian biostratigraphy of Atlantic Morocco. Quaternaire. 2002;13:43–53.
Suwa G, Beyene Y, Nakaya H, Bernor RL, Boisserie JR, Bibi F, Ambrose SH, Sano K, Katoh S, Asfaw B. Newly discovered cercopithecid, equid and other mammalian fossils from the Chorora formation, Ethiopia. Anthropol Sci. 2015;123:19–39.
Manthi FK. A preliminary review of the rodent fauna from Lemudong’o, southwestern Kenya, and its implication to the late Miocene paleoenvironments. Kirtlandia. 2007;56:92–105.
Deino AL, Ambrose SH. 40Ar/39Ar dating of the Lemudong’o late Miocene fossil assemblages, southern Kenya rift. Kirtlandia. 2007;56:65–71.
Denys C. Of mice and men. Evolution in East and South Africa during Plio-Pleistocene times. In: Bromage GT, Schrenk F, editors. African Biogeography, Climate Change and Human Evolution. New York: Oxford University Press; 1999. pp. 226–252.
Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4:e88. PubMed PMC
Gernhard T. The conditioned reconstructed process. J Theor Biol. 2008;253:769–778. PubMed
Rambaut A, Suchard MA, Xie D, Drummond AJ. Tracer v1.6. 2014.
Matzke NJ. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst Biol. 2014;63:951–970. PubMed
Holt BG, Lessard JP, Borregaard MK, Fritz SA, Araújo MB, Dimitrov D, Fabre PH, Graham CH, Graves GR, Jønsson KA, Nogués-Bravo D, Wang Z, Whittaker RJ, Fjeldså J, Rahbek C. An update of Wallace’s zoogeographic regions of the world. Science. 2013;339:74–78. PubMed
Ree RH, Smith SA. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst Biol. 2008;57:4–14. PubMed
Ree RH, Sanmartín I. Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. J Biogeogr. 2018;45:741–749.
Wiens JJ, Donoghue MJ. Historical biogeography, ecology, and species richness. Trends Ecol Evol. 2004;19:639–644. PubMed
Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model. 2006;190:231–259.
Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt JY, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt CD, Kageyama M, Kitoh A, Laîné A, Loutre MF, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Yu Y, Zhao Y. Results of PMIP2 coupled simulations of the mid-Holocene and last glacial maximum - part 1: experiments and large-scale features. Clim Past. 2007;3:261–277.
Otto-Bliesner BL. Simulating arctic climate warmth and icefield retreat in the last interglaciation. Science. 2006;311:1751–1753. PubMed
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 2005;25:1965–1978.
Phillips SJ, Dudík M, Schapire RE. A maximum entropy approach to species distribution modeling. Canada: Banff; 2004. pp. 655–662.
Jiménez-Valverde A, Lobo JM. Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecol. 2007;31:361–369.
Manel S, Williams HC, Ormerod SJ. Evaluating presence absence models in ecology; the need to count for prevalence. J Appied Ecol. 2001;38:921–931.