Reticulate Pleistocene evolution of Ethiopian rodent genus along remarkable altitudinal gradient
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28963084
DOI
10.1016/j.ympev.2017.09.020
PII: S1055-7903(17)30348-2
Knihovny.cz E-zdroje
- Klíčová slova
- Ecological speciation, Ethiopian highlands, Great Rift Valley, Mitochondrial introgression, Rodentia, Stenocephalemys,
- MeSH
- cytochromy b chemie klasifikace genetika MeSH
- ekosystém MeSH
- fylogeneze MeSH
- haplotypy MeSH
- hybridizace genetická MeSH
- karyotyp MeSH
- mitochondriální DNA chemie izolace a purifikace metabolismus MeSH
- molekulární evoluce * MeSH
- Murinae anatomie a histologie klasifikace genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Etiopie MeSH
- Názvy látek
- cytochromy b MeSH
- mitochondriální DNA MeSH
The Ethiopian highlands are the most extensive complex of mountainous habitats in Africa. The presence of the Great Rift Valley (GRV) and the striking elevational ecological gradients inhabited by recently radiated Ethiopian endemics, provide a wide spectrum of model situations for evolutionary studies. The extant species of endemic rodents, often markedly phenotypically differentiated, are expected to possess complex genetic features which evolved asa consequence of the interplay between geomorphology and past climatic changes. In this study, we used the largest available multi-locus genetic dataset of the murid genus Stenocephalemys (347 specimens from ca 40 localities across the known distributional area of all taxa) to investigate the relative importance of disruptive selection, temporary geographic isolation and introgression in their adaptive radiations in the Pleistocene. We confirmed the four main highly supported mitochondrial (mtDNA) clades that were proposed as four species in a previous pilot study: S. albipes is a sister species of S. griseicauda (both lineages are present on both sides of the GRV), while the second clade is formed by two Afro-alpine species, S. albocaudata (east of GRV) and the undescribed Stenocephalemys sp. A (west of GRV). There is a clear elevational gradient in the distribution of the Stenocephalemys taxa with two to three species present at different elevations of the same mountain range. Surprisingly, the nuclear species tree corresponded only a little to the mtDNA tree. Multispecies coalescent models based on six nuclear markers revealed the presence of six separate gene pools (i.e. candidate species), with different topology. Phylogenetic analysis, together with the geographic distribution of the genetic groups, suggests a complex reticulate evolution. We propose a scenario that involves (besides classical allopatric speciation) two cases of disruptive selection along the elevational ecological gradient, multiple crosses of GRV in dry and cold periods of the Pleistocene, followed by hybridization and mtDNA introgression on imperfect reproductive barriers. Spatial expansion of the currently most widespread "albipes" mtDNA clade was followed by population fragmentation, lineage sorting and again by hybridization and mtDNA introgression. Comparison of this genetic structure to other Ethiopian endemic taxa highlight the geographical areas of special conservation concern, where more detailed biodiversity studies should be carried out to prevent many endemic taxa from going extinct even before they are recognized.
A N Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences Moscow Russia
Department of Biology Dire Dawa University Ethiopia
Department of Zoology Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Vertebrate Biology of the Czech Academy of Sciences Brno Czech Republic
Citace poskytuje Crossref.org