Historical biogeography, systematics, and integrative taxonomy of the non-Ethiopian speckled pelage brush-furred rats (Lophuromys flavopunctatus group)

. 2021 May 19 ; 21 (1) : 89. [epub] 20210519

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34011264
Odkazy

PubMed 34011264
PubMed Central PMC8132446
DOI 10.1186/s12862-021-01813-w
PII: 10.1186/s12862-021-01813-w
Knihovny.cz E-zdroje

BACKGROUND: The speckled-pelage brush-furred rats (Lophuromys flavopunctatus group) have been difficult to define given conflicting genetic, morphological, and distributional records that combine to obscure meaningful accounts of its taxonomic diversity and evolution. In this study, we inferred the systematics, phylogeography, and evolutionary history of the L. flavopunctatus group using maximum likelihood and Bayesian phylogenetic inference, divergence times, historical biogeographic reconstruction, and morphometric discriminant tests. We compiled comprehensive datasets of three loci (two mitochondrial [mtDNA] and one nuclear) and two morphometric datasets (linear and geometric) from across the known range of the genus Lophuromys. RESULTS: The mtDNA phylogeny supported the division of the genus Lophuromys into three primary groups with nearly equidistant pairwise differentiation: one group corresponding to the subgenus Kivumys (Kivumys group) and two groups corresponding to the subgenus Lophuromys (L. sikapusi group and L. flavopunctatus group). The L. flavopunctatus group comprised the speckled-pelage brush-furred Lophuromys endemic to Ethiopia (Ethiopian L. flavopunctatus members [ETHFLAVO]) and the non-Ethiopian ones (non-Ethiopian L. flavopunctatus members [NONETHFLAVO]) in deeply nested relationships. There were distinctly geographically structured mtDNA clades among the NONETHFLAVO, which were incongruous with the nuclear tree where several clades were unresolved. The morphometric datasets did not systematically assign samples to meaningful taxonomic units or agree with the mtDNA clades. The divergence dating and ancestral range reconstructions showed the NONETHFLAVO colonized the current ranges over two independent dispersal events out of Ethiopia in the early Pleistocene. CONCLUSION: The phylogenetic associations and divergence times of the L. flavopunctatus group support the hypothesis that paleoclimatic impacts and ecosystem refugia during the Pleistocene impacted the evolutionary radiation of these rodents. The overlap in craniodental variation between distinct mtDNA clades among the NONETHFLAVO suggests unraveling underlying ecomorphological drivers is key to reconciling taxonomically informative morphological characters. The genus Lophuromys requires a taxonomic reassessment based on extensive genomic evidence to elucidate the patterns and impacts of genetic isolation at clade contact zones.

Zobrazit více v PubMed

Mace GM. The role of taxonomy in species conservation. Philos Trans R Soc Lond B. 2004;359(1444):711–719. doi: 10.1098/rstb.2003.1454. PubMed DOI PMC

Dayrat B. Towards integrative taxonomy. Biol J Lin Soc. 2005;85(3):407–415. doi: 10.1111/j.1095-8312.2005.00503.x. DOI

Kinnison MT, Hairston NG, Jr, Hendry AP. Cryptic eco-evolutionary dynamics. Ann N Y Acad Sci. 2015;1360(1):120–144. doi: 10.1111/nyas.12974. PubMed DOI

Carleton MD, Musser GG. Family Muridae: gerbils, jirds, rats, and mice. In: Happold DCD, editor. Mammals of Africa volume III: rodents, hares and rabbits. London: Bloomsburry Publishing; 2013.

Denys C, Taylor P, Aplin K. Family Muridae (True Mice and Rats, Gerbils and relatives) In: Wilson DE, Mittermeier RA, Lacher TE, editors. Handbook of the mammals of the world, volume 7: rodents II. Barcelona: Lynx Edicions in association with Conservation International and IUCN; 2017.

Musser GG, Carleton MD. Superfamily Muroidea. In: Wilson DE, Reeder DM, editors. Mammal species of the world: a taxonomic and geographic reference. Baltimore, MD: John Hopkins University Press; 2005. pp. 894–1531.

Monadjem A, Taylor PJ, Denys C, Cotterill FP. Rodents of sub-Saharan Africa. Berlin, München, Boston: De Gruyter; 2015.

Steppan S, Adkins R, Anderson J. Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Syst Biol. 2004;53(4):533–553. doi: 10.1080/10635150490468701. PubMed DOI

Steppan JS, Adkins RM, Spinks PQ, Hale CH. Multigene phylogeny of the Old World mice, Murinae, reveals distinct geographic lineages and the declining utility of mitochondrial genes compared to nuclear genes. Mol Phylogenet Evol. 2005;37(2):370–388. doi: 10.1016/j.ympev.2005.04.016. PubMed DOI

Dieterlen F. Neue Erkenntnisse über afrikanische Bürstenhaarmäuse, Gattung Lophuromys (Muridae; Rodentia) Bonn zool Beitr. 1987;38(3):183–194.

Dieterlen F. Die afrikanische Muridengattung Lophuromys Peters, 1874: Vergleiche an Hand neuer Daten zur Morphologie, Okologie und Biologie. Stuttg Beitr Naturkd. 1976;285:1–96.

Verheyen WN, Hulselmans JLJ, Dierckx T, Verheyen E. The Lophuromysflavopunctatus (THOMAS 1888) s.l. species complex: a craniometric study, with the description and genetic characterization of two new species (Rodentia - Muridae - Africa) Bull Inst R Sci Nat Belg Biol. 2002;72:141–182.

Lavrenchenko LA, Verheyen WN, Verheyen E, Hulselmans J, Leirs H. Morphometric and genetic study of Ethiopian Lophuromys flavopunctatus (THOMAS, 1888) species complex with description of three new 70-chromosomal species (Muridae, Rodentia) Bull Inst R Sci Nat Belg Biol. 2007;77:77–117.

Verheyen WN, Leirs H, Corti M, Hulselmans JLJ, Dierckx T, Mulungu L, Verheyen E. The characterization of the Kilimanjaro Lophuromys aquilus (TRUE 1892) population and the description of five new Lophuromys species (Rodentia, Muridae) Bull Inst R Sci Nat Belg Biol. 2007;77:23–75.

Bryja J, Meheretu Y, Šumbera R, Lavrenchenko LA. Annotated checklist, taxonomy and distribution of rodents in Ethiopia. Folia Zool. 2019;68(3):117–213. doi: 10.25225/fozo.030.2019. DOI

Komarova VA, Kostin DS, Bryja J, Mikula O, Bryjová A, Čížková D, Šumbera R, Meheretu Y, Lavrenchenko LA. Complex reticulate evolution of speckled brush-furred rats (Lophuromys) in the Ethiopian centre of endemism. Mol Ecol. 2021 doi: 10.1111/mec.15891. PubMed DOI

Lavrenchenko LA, Verheyen E, Potapov SG, Lebedev VS, Bulatova NS, Aniskin VM, Verheyen WN, Ryskov AP. Divergent and reticulate processes in evolution of Ethiopian Lophuromys flavopunctatus species complex: evidence from mitochondrial and nuclear DNA differentiation patterns. Biol J Linn Soc. 2004;83(3):301–316. doi: 10.1111/j.1095-8312.2004.00390.x. DOI

Hollister N. East African mammals in the United States National Museum: part II. Rodentia, Lagomorpha, and Tubulidentata, vol. 99: US Government Printing Office; 1919.

Osgood WH. New and imperfectly known small mammals from Africa. Chicago, IL: Field Museum of Natural History; 1936.

Allen GM. A checklist of African mammals. Bull Mus Comp Zool. 1939;83:3–563. doi: 10.5281/zenodo.3760898. DOI

Misonne X. Order Rodentia. In: Meester J, Setzer HW, editors. The mammals of Africa: an identification manual. Washington, DC: Smithsonian Institution Press; 1971. pp. 20–21.

Dieterlen F. GENUS Lophuromys: brush-furred rats. In: Happold DCD, editor. Mammals of Africa volume III: rodents, hares and rabbits. London: Bloomsburry Publishing; 2013. pp. 238–239.

True FW. An annotated catalogue of the mammals collected by Dr. W. L. Abbott in the Kilma-Njaro region. East Africa. Proc U S Natl Mus. 1892;15(915):445–480. doi: 10.5479/si.00963801.15-915.445. DOI

Thomas O. New mammals collected in north-east Africa by Mr. Zaphiro, and presented to the British Museum by W. N. McMilan, Esq. Ann Mag Nat Hist. 1906;7(18):300–306. doi: 10.1080/00222930608562614. DOI

Verheyen WN, Hulselmans J, Colyn M, Hutterer R. Systematics and zoogeography of the small mammal fauna of Cameroun: description of two new Lophuromys (Rodentia: Muridae) endemic to Mount Cameroun and Mount Oku. Bull Inst R Sci Nat Belg Sci terre. 1997;67:163–186.

Dieterlen F. Beiträge zur Kenntnis der Gattung Lophuromys (Muridae: Rodentia) in Kamerun und Gabun. Bonn Zool Beitr. 1978;29:287–299.

Dollman G. LXXI.—new mammals from British East Africa. Ann Mag Nat Hist. 1909;4(24):549–553. doi: 10.1080/00222930908692716. DOI

Dieterlen F, Gelmroth KG. Eine weitere Bürstenhaarmaus aus dem Kivugebiet: Lophuromys cinereus spec. nov.(Muridae; Rodentia) Z Säugetierkd. 1974;39(6):337–342.

Thomas O, Wroughton RC. New mammals from Lake Chad and the Congo, mostly from the collections made during the Alexander-Gosling expedition. J Nat Hist. 1907;19(113):370–387. doi: 10.1080/00222930708562657. DOI

Heller E. New rodents from British East Africa. Washington, DC: Smithsonian Institution; 1912.

Dollman G. XXV.—on a collection of mammals made by Mr. S. A. Neave, during his expedition in Northern Rhodesia. Ann Mag Nat Hist. 1910;5(26):173–181. doi: 10.1080/00222931008692748. DOI

Burgin CJ, Colella JP, Kahn PL, Upham NS. How many species of mammals are there? J Mammal. 2018;99(1):1–14. doi: 10.1093/jmammal/gyx147. DOI

Mammal Diversity Database. Mammal Diversity Database (Version 1.2). [https://www.mammaldiversity.org/index.html]. Accessed 17 Mar 2020.

Kerbis Peterhans JC, Huhndorf MH, Plumptre AJ, Hutterer R, Kaleme P, Ndara B. Mammals, other than bats, from the Misotshi-Kabogo highlands (eastern Democratic Republic of Congo), with the description of two new species (Mammalia: Soricidae) Bonn Zool Bull. 2013;62(2):203–219.

Kerbis Peterhans JC, Kityo RM, Stanley WT, Austin PK. Small mammals along an elevational gradient in Rwenzori Mountains National Park, Uganda. In: Osmaston HA, Tukahirwa J, Basalirwa C, Nyakaana J, editors. The Rwenzori Mountains National Park, Uganda exploration, environment & biology conservation, management and community relations. Kampala: Makerere University; 1998. pp. 149–171.

Musila S, Monadjem A, Webala PW, Patterson BD, Hutterer R, De Jong YA, Butynski TM, Mwangi G, Chen ZZ, Jiang XL. An annotated checklist of mammals of Kenya. Zool Res. 2019;40(1):3–52. doi: 10.24272/j.issn.2095-8137.2018.059. PubMed DOI PMC

Mwebi O, Nguta E, Onduso V, Nyakundi B, Jiang X-L, Kioko EN. Small mammal diversity of Mt. Kenya based on carnivore fecal and surface bone remains. Zool Res. 2019;40(1):61–69. doi: 10.24272/j.issn.2095-8137.2018.055. PubMed DOI PMC

Huhndorf MH, Kerbis Peterhans JC, Loew SS. Comparative phylogeography of three endemic rodents from the Albertine Rift, east central Africa. Mol Ecol. 2007;16(3):663–674. doi: 10.1111/j.1365-294X.2007.03153.x. PubMed DOI

Denys C, Lalis A, Aniskin V, Kourouma F, Soropogui B, Sylla O, Doré A, Koulemou K, Beavogui ZB, Sylla M. New data on the taxonomy and distribution of Rodentia (Mammalia) from the western and coastal regions of Guinea West Africa. Hystrix. 2009;76(1):111–128. doi: 10.1080/11250000802616817. DOI

De Queiroz K. Species concepts and species delimitation. Syst Biol. 2007;56(6):879–886. doi: 10.1080/10635150701701083. PubMed DOI

Carstens BC, Pelletier TA, Reid NM, Satler JD. How to fail at species delimitation. Mol Ecol. 2013;22(17):4369–4383. doi: 10.1111/mec.12413. PubMed DOI

Taylor PJ, Lavrenchenko LA, Carleton MD, Verheyen E, Bennett NC, Oosthuizen CJ, Maree S. Specific limits and emerging diversity patterns in East African populations of laminate-toothed rats, genus Otomys (Muridae: Murinae: Otomyini): revision of the Otomys typus complex. Zootaxa. 2011;3024:1–66. doi: 10.11646/zootaxa.3024.1.1. DOI

Bryja J, Mikula O, Sumbera R, Meheretu Y, Aghova T, Lavrenchenko LA, Mazoch V, Oguge N, Mbau JS, Welegerima K, et al. Pan-African phylogeny of Mus (subgenus Nannomys) reveals one of the most successful mammal radiations in Africa. BMC Evol Biol. 2014;14:256. doi: 10.1186/s12862-014-0256-2. PubMed DOI PMC

Sumbera R, Krasova J, Lavrenchenko LA, Mengistu S, Bekele A, Mikula O, Bryja J. Ethiopian highlands as a cradle of the African fossorial root-rats (genus Tachyoryctes), the genetic evidence. Mol Phylogenet Evol. 2018;126:105–115. doi: 10.1016/j.ympev.2018.04.003. PubMed DOI

Bryja J, Kostin D, Meheretu Y, Sumbera R, Bryjova A, Kasso M, Mikula O, Lavrenchenko LA. Reticulate Pleistocene evolution of Ethiopian rodent genus along remarkable altitudinal gradient. Mol Phylogenet Evol. 2018;118:75–87. doi: 10.1016/j.ympev.2017.09.020. PubMed DOI

Demos TC. Comparative phylogeography, phylogenetics, and population genomics of east African Montane small mammals. City University of New York; 2014.

Demos TC, Kerbis Peterhans JC, Agwanda B, Hickerson MJ. Uncovering cryptic diversity and refugial persistence among small mammal lineages across the Eastern Afromontane biodiversity hotspot. Mol Phylogenet Evol. 2014;71:41–54. doi: 10.1016/j.ympev.2013.10.014. PubMed DOI

Demos TC, Kerbis Peterhans JC, Joseph TA, Robinson JD, Agwanda B, Hickerson MJ. Comparative population genomics of African Montane forest mammals support population persistence across a climatic gradient and quaternary climatic cycles. PLoS ONE. 2015;10(9):e0131800. doi: 10.1371/journal.pone.0131800. PubMed DOI PMC

Bryja J, Šumbera R, Kerbis Peterhans JC, Aghová T, Bryjová A, Mikula O, Nicolas V, Denys C, Verheyen E. Evolutionary history of the thicket rats (genus Grammomys) mirrors the evolution of African forests since late Miocene. J Biogeogr. 2017;44(1):182–194. doi: 10.1111/jbi.12890. DOI

Bryja J, Konvičková H, Bryjová A, Mikula O, Makundi R, Chitaukali WN, Šumbera R. Differentiation underground: range-wide multi-locus genetic structure of the silvery mole-rat does not support current taxonomy based on mitochondrial sequences. Mamm Biol. 2018;93:82–92. doi: 10.1016/j.mambio.2018.08.006. DOI

Tolesa Z, Bekele E, Tesfaye K, Ben Slimen H, Valqui J, Getahun A, Hartl GB, Suchentrunk F. Mitochondrial and nuclear DNA reveals reticulate evolution in hares (Lepus spp., Lagomorpha, Mammalia) from Ethiopia. PLoS ONE. 2017;12(8):e0180137. doi: 10.1371/journal.pone.0180137. PubMed DOI PMC

Krasova J, Mikula O, Mazoch V, Bryja J, Rican O, Sumbera R. Evolution of the Grey-bellied pygmy mouse group: highly structured molecular diversity with predictable geographic ranges but morphological crypsis. Mol Phylogenet Evol. 2019;130:143–155. doi: 10.1016/j.ympev.2018.10.016. PubMed DOI

Sabuni C, Aghová T, Bryjová A, Šumbera R, Bryja J. Biogeographic implications of small mammals from Northern Highlands in Tanzania with first data from the volcanic Mount Kitumbeine. Mammalia. 2018;82(4):360–372. doi: 10.1515/mammalia-2017-0069. DOI

Bohoussou KH, Cornette R, Akpatou B, Colyn M, Kerbis Peterhans JC, Kennis J, Šumbera R, Verheyen E, N'Goran E, Katuala P, et al. The phylogeography of the rodent genus Malacomys suggests multiple Afrotropical Pleistocene lowland forest refugia. J Biogeogr. 2015;42(11):2049–2061. doi: 10.1111/jbi.12570. DOI

Mizerovská D, Nicolas V, Demos TC, Akaibe D, Colyn M, Denys C, Kaleme PK, Katuala P, Kennis J, Kerbis Peterhans JC, et al. Genetic variation of the most abundant forest-dwelling rodents in Central Africa (Praomys jacksoni complex): evidence for Pleistocene refugia in both montane and lowland forests. J Biogeogr. 2019;46(7):1466–1478. doi: 10.1111/jbi.13604. DOI

Rowe KC, Aplin KP, Baverstock PR, Moritz C. Recent and rapid speciation with limited morphological disparity in the genus Rattus. Syst Biol. 2011;60(2):188–203. doi: 10.1093/sysbio/syq092. PubMed DOI

Estes S, Arnold SJ. Resolving the paradox of stasis: models with stabilizing selection explain evolutionary divergence on all timescales. Am Nat. 2007;169(2):227–244. doi: 10.1086/510633. PubMed DOI

Wiens JJ. Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution. 2004;58(1):193–197. doi: 10.1111/j.0014-3820.2004.tb01586.x. PubMed DOI

Knowles LL, Carstens BC. Delimiting species without monophyletic gene trees. Syst Biol. 2007;56(6):887–895. doi: 10.1080/10635150701701091. PubMed DOI

Bickford D, Lohman DJ, Sodhi NS, Ng PK, Meier R, Winker K, Ingram KK, Das I. Cryptic species as a window on diversity and conservation. Trends Ecol Evol. 2007;22(3):148–155. doi: 10.1016/j.tree.2006.11.004. PubMed DOI

D’Elía G, Fabre P-H, Lessa EP. Rodent systematics in an age of discovery: recent advances and prospects. J Mammal. 2019;100(3):852–871. doi: 10.1093/jmammal/gyy179. DOI

DeSalle R, Egan MG, Siddall M. The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philos Trans R Soc Lond B. 2005;360(1462):1905–1916. doi: 10.1098/rstb.2005.1722. PubMed DOI PMC

Godfray HC. Challenges for taxonomy. Nature. 2002;417(6884):17–19. doi: 10.1038/417017a. PubMed DOI

Padial JM, Miralles A, De la Riva I, Vences M. The integrative future of taxonomy. Front Zool. 2010;7(1):16. doi: 10.1186/1742-9994-7-16. PubMed DOI PMC

Breno M, Leirs H, Van Dongen S. Traditional and geometric morphometrics for studying skull morphology during growth in Mastomys natalensis (Rodentia: Muridae) J Mammal. 2011;92(6):1395–1406. doi: 10.1644/10-mamm-a-331.1. DOI

Springer MS, DeBry RW, Douady C, Amrine HM, Madsen O, de Jong WW, Stanhope MJ. Mitochondrial versus nuclear gene sequences in deep-level mammalian phylogeny reconstruction. Mol Biol Evol. 2001;18(2):132–143. doi: 10.1093/oxfordjournals.molbev.a003787. PubMed DOI

DeBry RW, Sagel RM. Phylogeny of Rodentia (Mammalia) inferred from the nuclear-encoded gene IRBP. Mol Phylogenet Evol. 2001;19(2):290–301. doi: 10.1006/mpev.2001.0945. PubMed DOI

Bryja J, Mikula O, Patzenhauerová H, Oguge NO, Šumbera R, Verheyen E, Riddle B. The role of dispersal and vicariance in the Pleistocene history of an East African mountain rodent, Praomys delectorum. J Biogeogr. 2014;41(1):196–208. doi: 10.1111/jbi.12195. DOI

deMenocal PB. African climate change and faunal evolution during the Pliocene-Pleistocene. Earth Planet Sci Lett. 2004;220(1–2):3–24. doi: 10.1016/s0012-821x(04)00003-2. DOI

Stanley WT, Rogers MA, Kihaule PM, Munissi MJ. Elevational distribution and ecology of small mammals on Africa's highest mountain. PLoS ONE. 2014;9(11):e109904. doi: 10.1371/journal.pone.0109904. PubMed DOI PMC

Stanley WT, Kihaule PM. Elevational distribution and ecology of small mammals on Tanzania's second highest mountain. PLoS ONE. 2016;11(9):e0162009. doi: 10.1371/journal.pone.0162009. PubMed DOI PMC

Onditi KO, Kerbis Peterhans JC, Demos TC, Musila S, Zhongzheng C, Xuelong J. Morphological and genetic characterization of Mount Kenya brush-furred rats (Lophuromys Peters 1874); relevance to taxonomy and ecology. Mammal Res. 2019;65(2):387–400. doi: 10.1007/s13364-019-00470-1. DOI

Kerbis Peterhans JC, Hutterer R, Krasova J, Doty J, Malekani J, Moyer D, Bryja J, Banasiak R, Demos T. Four new species of the Hylomyscus anselli group (Mammalia: Rodentia: Muridae) from the Democratic Republic of Congo and Tanzania. Bonn Zool Bull. 2020;69:55–83. doi: 10.20363/BZB-2020.69.1.055. DOI

Demos TC, Agwanda B, Hickerson MJ. Integrative taxonomy within the Hylomyscus denniae complex (Rodentia: Muridae) and a new species from Kenya. J Mammal. 2013;95(1):E1–E15. doi: 10.1644/13-MAMM-A-268. DOI

Stanley WT, Esselstyn JA. Biogeography and diversity among montane populations of mouse shrew (Soricidae: Myosorex) in Tanzania. Biol J Lin Soc. 2010;100(3):669–680. doi: 10.1111/j.1095-8312.2010.01448.x. DOI

Taylor PJ, Maree S, Van Sandwyk J, Kerbis Peterhans JC, Stanley WT, Verheyen E, Kaliba P, Verheyen W, Kaleme P, Bennett NC. Speciation mirrors geomorphology and palaeoclimatic history in African laminate-toothed rats (Muridae: Otomyini) of the Otomys denti and Otomys lacustris species-complexes in the ‘Montane Circle’ of East Africa. Biol J Linn Soc. 2009;96(4):913–941. doi: 10.1111/j.1095-8312.2008.01153.x. DOI

Fabre PH, Hautier L, Dimitrov D, Douzery EJ. A glimpse on the pattern of rodent diversification: a phylogenetic approach. BMC Evol Biol. 2012;12(1):88. doi: 10.1186/1471-2148-12-88. PubMed DOI PMC

Kennis JAN, Nicolas V, Hulselmans JAN, Katuala PGB, Wendelen WIM, Verheyen E, Dudu AM, Leirs H. The impact of the Congo River and its tributaries on the rodent genus Praomys: speciation origin or range expansion limit? Zool J Linn Soc. 2011;163(3):983–1002. doi: 10.1111/j.1096-3642.2011.00733.x. DOI

McCauley DJ, Salkeld DJ, Young HS, Makundi R, Dirzo R, Eckerlin RP, Lambin EF, Gaffikin L, Barry M, Helgen KM. Effects of land use on plague (Yersinia pestis) activity in rodents in Tanzania. Am J Trop Med Hyg. 2015;92(4):776–783. doi: 10.4269/ajtmh.14-0504. PubMed DOI PMC

Coyne JA, Orr HA. Speciation. Sunderland, MA: Sinauer Associates; 2004.

Dieterlen F, Turni H, Marquart K. Type specimens of mammals in the collection of the Museum of Natural History Stuttgart. Stuttg Beitr Naturkd A. 2013;6:291–303.

Heller E. New species of rodents and carnivores from equatorial Africa: Smithsonian institution; 1911.

Nabhan AR, Sarkar IN. The impact of taxon sampling on phylogenetic inference: a review of two decades of controversy. Brief Bioinform. 2011;13(1):122–134. doi: 10.1093/bib/bbr014. PubMed DOI PMC

Hillis DM, Pollock DD, McGuire JA, Zwickl DJ. Is sparse taxon sampling a problem for phylogenetic inference? Syst Biol. 2003;52(1):124–126. doi: 10.1080/10635150390132911. PubMed DOI PMC

Lambert SM, Reeder TW, Wiens JJ. When do species-tree and concatenated estimates disagree? An empirical analysis with higher-level scincid lizard phylogeny. Mol Phylogenet Evol. 2015;82:146–155. doi: 10.1016/j.ympev.2014.10.004. PubMed DOI

Gabriel MW, Matsui GY, Friedman R, Lovell CR. Optimization of multilocus sequence analysis for identification of species in the genus Vibrio. Appl Environ Microbiol. 2014;80(17):5359–5365. doi: 10.1128/AEM.01206-14. PubMed DOI PMC

Tsang AKL, Lee HH, Yiu S-M, Lau SKP, Woo PCY. Failure of phylogeny inferred from multilocus sequence typing to represent bacterial phylogeny. Sci Rep. 2017;7(1):4536. doi: 10.1038/s41598-017-04707-4. PubMed DOI PMC

Jiang W, Chen S-Y, Wang H, Li D-Z, Wiens JJ. Should genes with missing data be excluded from phylogenetic analyses? Mol Phylogenet Evol. 2014;80:308–318. doi: 10.1016/j.ympev.2014.08.006. PubMed DOI

Sambrook J, Edward FF, Tom M. Molecular cloning: a laboratory manual. 2. New York, NY: Cold Spring Harbor Laboratory Press; 1989.

Larsson A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 2014;30(22):3276–3278. doi: 10.1093/bioinformatics/btu531. PubMed DOI PMC

Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC

Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2016;44(D1):D67–72. doi: 10.1093/nar/gkv1276. PubMed DOI PMC

Van de Perre F, Adriaensen F, Terryn L, Pauwels O, Leirs H, Gilissen E, Verheyen E. African Mammalia. [http://projects.biodiversity.be/africanmammalia]. Accessed 10 Oct 2020.

Vaidya G, Lohman DJ, Meier R. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics. 2011;27(2):171–180. doi: 10.1111/j.1096-0031.2010.00329.x. PubMed DOI

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC

Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet. 2001;68(4):978–989. doi: 10.1086/319501. PubMed DOI PMC

Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sanchez-Gracia A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34(12):3299–3302. doi: 10.1093/molbev/msx248. PubMed DOI

Elewa AM, editor. Morphometrics for nonmorphometricians. New York, NY: Springer; 2010.

Strauss RE. Morphometrics for nonmorphometricians. Berlin: Springer; 2010. Discriminating groups of organisms; pp. 73–91.

Rohlf FJ. The tps series of software. Hystrix. 2015;26(1):9–12. doi: 10.4404/hystrix-26.1-11264. DOI

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC

Zhang D, Gao F, Jakovlic I, Zou H, Zhang J, Li WX, Wang GT. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour. 2020;20(1):348–355. doi: 10.1111/1755-0998.13096. PubMed DOI

Minh BQ, Nguyen MA, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013;30(5):1188–1195. doi: 10.1093/molbev/mst024. PubMed DOI PMC

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC

Huelsenbeck JP, Larget B, Alfaro ME. Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. Mol Biol Evol. 2004;21(6):1123–1133. doi: 10.1093/molbev/msh123. PubMed DOI

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol. 2018;67(5):901–904. doi: 10.1093/sysbio/syy032. PubMed DOI PMC

Rambaut A. FigTree v1. 4.4. A graphical viewer of phylogenetic trees; http://tree.bio.ed.ac.uk/software/figtree/. Accessed 23 Jan 2020.

Mikula O. Cutting tree branches to pick OTUs: a novel method of provisional species delimitation. bioRxiv. 2018 doi: 10.1101/419887. DOI

Kapli P, Lutteropp S, Zhang J, Kobert K, Pavlidis P, Stamatakis A, Flouri T. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics. 2017;33(11):1630–1638. doi: 10.1093/bioinformatics/btx025. PubMed DOI PMC

Fujisawa T, Barraclough TG. Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Syst Biol. 2013;62(5):707–724. doi: 10.1093/sysbio/syt033. PubMed DOI PMC

Bouckaert R, Vaughan TG, Barido-Sottani J, Duchene S, Fourment M, Gavryushkina A, Heled J, Jones G, Kuhnert D, De Maio N, et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2019;15(4):e1006650. doi: 10.1371/journal.pcbi.1006650. PubMed DOI PMC

R Core Team. R: a language and environment for statistical computing. https://www.R-project.org/. Accessed 5 Jan 2020.

Ezard T, Fujisawa T, Barraclough TG. splits: Species' limits by Threshold Statistics. R package version 1.0-19/r52.; https://R-Forge.R-project.org/projects/splits/. Accessed 10 Oct 2020.

Puillandre N, Lambert A, Brouillet S, Achaz G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol Ecol. 2012;21(8):1864–1877. doi: 10.1111/j.1365-294X.2011.05239.x. PubMed DOI

Wieman AC, Berendzen PB, Hampton KR, Jang J, Hopkins MJ, Jurgenson J, McNamara JC, Thurman CL. A panmictic fiddler crab from the coast of Brazil? Impact of divergent ocean currents and larval dispersal potential on genetic and morphological variation in Uca maracoani. Mar Biol. 2013;161(1):173–185. doi: 10.1007/s00227-013-2327-0. DOI

Leigh JW, Bryant D, Nakagawa S. popart: full-feature software for haplotype network construction. Methods Ecol Evol. 2015;6(9):1110–1116. doi: 10.1111/2041-210x.12410. DOI

Bandelt HJ, Forster P, Rohl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999;16(1):37–48. doi: 10.1093/oxfordjournals.molbev.a026036. PubMed DOI

Aghova T, Kimura Y, Bryja J, Dobigny G, Granjon L, Kergoat GJ. Fossils know it best: using a new set of fossil calibrations to improve the temporal phylogenetic framework of murid rodents (Rodentia: Muridae) Mol Phylogenet Evol. 2018;128:98–111. doi: 10.1016/j.ympev.2018.07.017. PubMed DOI

Ogilvie HA, Bouckaert RR, Drummond AJ. StarBEAST2 brings faster species tree inference and accurate estimates of substitution rates. Mol Biol Evol. 2017;34(8):2101–2114. doi: 10.1093/molbev/msx126. PubMed DOI PMC

Yu Y, Blair C, He X. RASP 4: ancestral state reconstruction tool for multiple genes and characters. Mol Biol Evol. 2020;37(2):604–606. doi: 10.1093/molbev/msz257. PubMed DOI

Yu Y, Harris AJ, Blair C, He X. RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Mol Phylogenet Evol. 2015;87:46–49. doi: 10.1016/j.ympev.2015.03.008. PubMed DOI

Ree RH, Smith SA. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst Biol. 2008;57(1):4–14. doi: 10.1080/10635150701883881. PubMed DOI

Matzke NJ. BioGeoBEARS: BioGeography with Bayesian (and likelihood) evolutionary analysis in R Scripts. https://CRAN.R-project.org/package=BioGeoBEARS. Accessed 13 Oct 2020.

Dinerstein E, Olson D, Joshi A, Vynne C, Burgess ND, Wikramanayake E, Hahn N, Palminteri S, Hedao P, Noss R, et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience. 2017;67(6):534–545. doi: 10.1093/biosci/bix014. PubMed DOI PMC

Viscosi V, Cardini A. Leaf morphology, taxonomy and geometric morphometrics: a simplified protocol for beginners. PLoS ONE. 2011;6(10):e25630. doi: 10.1371/journal.pone.0025630. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Molecular detection and genomic characterization of diverse hepaciviruses in African rodents

. 2021 Jan ; 7 (1) : veab036. [epub] 20210412

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...