Sap flow and growth response of Norway spruce under long-term partial rainfall exclusion at low altitude

. 2023 ; 14 () : 1089706. [epub] 20230214

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36866386

INTRODUCTION: Under ongoing climate change, more frequent and severe drought periods accompanied by heat waves are expected in the future. Under these conditions, the tree's survival is conditioned by fast recovery of functions after drought release. Therefore, in the presented study, we evaluated the effect of long-term water reduction in soil on tree water use and growth dynamics of Norway spruce. METHODS: The experiment was conducted in two young Norway spruce plots located on suboptimal sites at a low altitude of 440 m a.s.l. In the first plot (PE), 25% of precipitation throughfall was excluded since 2007, and the second one represented the control treatment with ambient conditions (PC). Tree sap flow, stem radial increment, and tree water deficit were monitored in two consecutive growing seasons: 2015-2016, with contrasting hydro-climatic conditions. RESULTS: Trees in both treatments showed relatively isohydric behavior reflected in a strong reduction of sap flow under the exceptional drought of 2015. Nevertheless, trees from PE treatment reduced sap flow faster than PC under decreasing soil water potential, exhibiting faster stomatal response. This led to a significantly lower sap flow of PE, compared to PC in 2015. The maximal sap flow rates were also lower for PE treatment, compared to PC. Both treatments experienced minimal radial growth during the 2015 drought and subsequent recovery of radial growth under the more the humid year of 2016. However, treatments did not differ significantly in stem radial increments within respective years. DISCUSSION: Precipitation exclusion treatment, therefore, led to water loss adjustment, but did not affect growth response to intense drought and growth recovery in the year after drought.

Zobrazit více v PubMed

Økland B., Berryman A. (2004). Resource dynamic plays a key role in regional fluctuations of the spruce bark beetles Ips typographus . Agric. For Entomol. [Internet] 6 (2), 141–146. doi: 10.1111/j.1461-9555.2004.00214.x DOI

Allen R., Pereira L., Raes D., Smith M. (1998). FAO irrigation and drainage paper no. 56. Rome Food Agric. Organ United Nations 56, 26–40.

Altman J., Fibich P., Santruckova H., Dolezal J., Stepanek P., Kopacek J., et al. . (2017). Environmental factors exert strong control over the climate-growth relationships of Picea abies in central Europe. Sci. Total Environ. 609, 506–516. doi: 10.1016/j.scitotenv.2017.07.134 PubMed DOI

Aranda I., Forner A., Cuesta B., Valladares F. (2012). Species-specific water use by forest tree species: From the tree to the stand. Agric. Water Manage. 114, 67–77. doi: 10.1016/j.agwat.2012.06.024 DOI

Bosela M., Tumajer J., Cienciala E., Dobor L., Kulla L., Marčiš P., et al. . (2021). Climate warming induced synchronous growth decline in Norway spruce populations across biogeographical gradients since 2000. Sci. Total Environ. 752, 1–12. doi: 10.1016/j.scitotenv.2020.141794 PubMed DOI

Breda N., Huc R., Granier A., Dreyer E. (2006). Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 63, 625–644. doi: 10.1051/forest:2006042 DOI

Brinkmann N., Eugster W., Buchmann N., Kahmen A. (2019). Species-specific differences in water uptake depth of mature temperate trees vary with water availability in the soil. Plant Biol. 21 (1), 71–81. doi: 10.1111/plb.12907 PubMed DOI

Čermák J., Kučera J., Bauerle W. L., Phillips N., Hinckley T. M. (2007). Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees. Tree Physiol. 27 (2), 181–198. doi: 10.1093/treephys/27.2.181 PubMed DOI

Čermák J., Kučera J., Nadezhdina N. (2004). Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees - Struct. Funct. 18 (5), 529–546. doi: 10.1007/s00468-004-0339-6 DOI

Čermák P., Mikita T., Kadavý J., Trnka M. (2021). Evaluating recent and future climatic suitability for the cultivation of Norway spruce in the Czech republic in comparison with observed tree cover loss between 2001 and 2020. Forests 12 (12), 1–16. doi: 10.3390/f12121687 DOI

Čermák J., Prax A. (2009). Transpiration and soil water supply in floodplain forests. Ekol Bratislava 28 (3), 248–254. doi: 10.4149/ekol-2009-03-248 DOI

Chen Z., Zhang Y., Yuan W., Zhu S., Pan R., Wan X., et al. . (2021). Coordinated variation in stem and leaf functional traits of temperate broadleaf tree species in the isohydric-anisohydric spectrum. Tree Physiol. 41 (9), 1601–1610. doi: 10.1093/treephys/tpab028 PubMed DOI

Cruiziat P., Cochard H., Améglio T. (2002). Hydraulic architecture of trees: Main concepts and results. Ann. For Sci. 59 (7), 723–752. doi: 10.1051/forest:2002060 DOI

Drew D. M., Downes G. M. (2009). The use of precision dendrometers in research on daily stem size and wood property variation: A review. Dendrochronologia 27 (2), 159–172. doi: 10.1016/j.dendro.2009.06.008 DOI

Ehrenberger W., Rüger S., Fitzke R., Vollenweider P., Günthardt-Goerg M., Kuster T., et al. . (2012). Concomitant dendrometer and leaf patch pressure probe measurements reveal the effect of microclimate and soil moisture on diurnal stem water and leaf turgor variations in young oak trees. Funct. Plant Biol. 39 (4), 297–305. doi: 10.1071/FP11206 PubMed DOI

Fassio C., Heath R., Arpaia M. L., Castro M. (2009). Sap flow in “Hass” avocado trees on two clonal rootstocks in relation to xylem anatomy. Sci. Hortic. (Amsterdam) 120 (1), 8–13. doi: 10.1016/j.scienta.2008.09.012 DOI

Flo V., Martínez-Vilalta J., Mencuccini M., Granda V., Anderegg W. R. L., Poyatos R. (2021). Climate and functional traits jointly mediate tree water-use strategies. New Phytol. 231 (2), 617–630. doi: 10.1111/nph.17404 PubMed DOI

Ge Z.-M., Kellomäki S., Zhou X., Wang K.-Y., Peltola H., Väisänen H., et al. . (2013). Effects of climate change on evapotranspiration and soil water availability in Norway spruce forests in southern Finland: an ecosystem model based approach. Ecohydrology [Internet] 6 (1), 51–63. doi: 10.1002/eco.276 DOI

Gryc V., Vavrčík H., Vichrová G. (2011). Monitoring of xylem formation in Norway spruce in the Czech republic 2009. Wood Res. 56 (4), 467–478.

Hajek P., Link R. M., Nock C. A., Bauhus J., Gebauer T., Gessler A., et al. . (2022). Mutually inclusive mechanisms of drought-induced tree mortality. Glob Chang Biol. 28 (10), 3365–3378. doi: 10.1111/gcb.16146 PubMed DOI

Hartmann H., Trumbore S. (2016). Understanding the roles of nonstructural carbohydrates in forest trees - from what we can measure to what we want to know. New Phytol. 211 (2), 386–403. doi: 10.1111/nph.13955 PubMed DOI

Held M., Ganthaler A., Lintunen A., Oberhuber W., Mayr S. (2021). Tracheid and pit dimensions hardly vary in the xylem of Pinus sylvestris under contrasting growing conditions. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.786593 PubMed DOI PMC

Hochberg U., Rockwell F. E., Holbrook N. M., Cochard H. (2018). Iso/Anisohydry: A Plant&Environment interaction rather than a simple hydraulic trait. Trends Plant Sci. [Internet] 23 (2), 112–120. doi: 10.1016/j.tplants.2017.11.002 PubMed DOI

Hsiao T. C. (1973). Plant responses to water stress. Annu. Rev. Plant Physiol. 24, 519–570. doi: 10.1146/annurev.pp.24.060173.002511 DOI

Huang J., Hammerbacher A., Gershenzon J., van Dam N. M., Sala A., McDowell N. G., et al. . (2021). Storage of carbon reserves in spruce trees is prioritized over growth in the face of carbon limitation. Proc. Natl. Acad. Sci. U S A 118 (33), 1–7. doi: 10.1073/pnas.2023297118 PubMed DOI PMC

Ionita M., Tallaksen L. M., Kingston D. G., Stagge J. H., Laaha G., Van Lanen H. A. J., et al. . (2017). The European 2015 drought from a climatological perspective. Hydrol Earth Syst. Sci. 21 (3), 1397–1419. doi: 10.5194/hess-21-1397-2017 DOI

Jarvis A. J., Davies W. J. (1998). The coupled response of stomatal conductance to photosynthesis and transpiration. J. Exp. Bot. [Internet] 49, 399–406. doi: 10.1093/jxb/49.Special_Issue.399 DOI

Jaworski A. (2019). “Hodowla lasu,” in Charakterystyka hodowlana drzew i krzewów leśnych, 2nd edition, (Warsaw, Poland: Wydawnictwo Rolnicze i Leśne; ). PWRiL, 2019.

Ježík M., Blaženec M., MG L., Ditmarová Ľ, Sitková Z., Střelcová K. (2015). Assessing seasonal drought stress response in Norway spruce (Picea abies (L.) karst.) by monitoring stem circumference and sap flow. Ecohydrology 8 (3), 378–386. doi: 10.1002/eco.1536 DOI

Johnston J. (1984). Econometric methods. 3rd ed. (New York, USA: McGraw Hill Inc; ).

Kaack L., Weber M., Isasa E., Karimi Z., Li S., Pereira L., et al. . (2021). Pore constrictions in intervessel pit membranes provide a mechanistic explanation for xylem embolism resistance in angiosperms. New Phytol. 230 (5), 1829–1843. doi: 10.1111/nph.17282 PubMed DOI

Klein T. (2014). The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Funct. Ecol. 28 (6), 1313–1320. doi: 10.1111/1365-2435.12289 DOI

Klimo E., Hager H. (2000) in Spruce Monocultures in Central Europe – Problems and Prospects, Spruce Monocultures in Central Europe – Problems and Prospects. (Joensuu, Finland: European Forest Institute; ).

Köcher P., Horna V., Leuschner C. (2013). Stem water storage in five coexisting temperate broad-leaved tree species: Significance, temporal dynamics and dependence on tree functional traits. Tree Physiol. 33 (8), 817–832. doi: 10.1093/treephys/tpt055 PubMed DOI

Köstner B., Falge E., Tenhunen J. D. (2002). Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the fichtelgebirge, Germany. Tree Physiol. [Internet] 22 (8), 567–574. doi: 10.1093/treephys/22.8.567 PubMed DOI

Krejza J., Cienciala E., Světlík J., Bellan M., Noyer E., Horáček P., et al. . (2021). Evidence of climate-induced stress of Norway spruce along elevation gradient preceding the current dieback in central Europe. Trees - Struct. Funct. [Internet] 35 (1), 103–119. doi: 10.1007/s00468-020-02022-6 DOI

Krejza J., Haeni M., Darenova E., Foltýnová L., Fajstavr M., Světlík J., et al. . (2022). Disentangling carbon uptake and allocation in the stems of a spruce forest. Environ. Exp. Bot. 196, 1–12. doi: 10.1016/j.envexpbot.2022.104787 DOI

Kunert N. (2020). Preliminary indications for diverging heat and drought sensitivities in Norway spruce and scots pine in central Europe. IForest 13 (2), 89–91. doi: 10.3832/ifor3216-012 DOI

Kurjak D., Střelcová K., Ditmarová Ľ, Priwitzer T., Kmet’ J., Homolák M., et al. . (2012). Physiological response of irrigated and non-irrigated Norway spruce trees as a consequence of drought in field conditions. Eur. J. For Res. [Internet] 131 (6), 1737–1746. doi: 10.1007/s10342-012-0611-z DOI

Levionnois S., Jansen S., Wandji R. T., Beauchêne J., Ziegler C., Coste S., et al. . (2021). Linking drought-induced xylem embolism resistance to wood anatomical traits in Neotropical trees. New Phytol. 229 (3), 1453–1466. doi: 10.1111/nph.16942 PubMed DOI

Lindberg M., Johansson M. (1992). Resistance of Picea abies seedlings to infection by Heterobasidion annosum in relation to drought stress. Eur. J. For Pathol. [Internet] 22 (2), 115–124. doi: 10.1111/j.1439-0329.1992.tb01438.x DOI

Lindner M., Maroschek M., Netherer S., Kremer A., Barbati A., Garcia-Gonzalo J., et al. . (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol. Manage. 259 (4), 698–709. doi: 10.1016/j.foreco.2009.09.023 DOI

Lovisolo C., Schubert A. (1998). Effects of water stress on vessel size and xylem hydraulic conductivity in Vitis vinifera l. J. Exp. Bot. 49 (321), 693–700. doi: 10.1093/jxb/49.321.693 DOI

Lu P., Biron P., Granier A., Cochard H. (1996). Water relations of adult Norway spruce (Picea abies l.) karst) under soil drought in the vosges mountains: Whole-tree hydraulic conductance, xylem embolism and water loss regulation. Ann. Des. Sci. For. 53 (1), 113–121. doi: 10.1051/forest:19960108 DOI

Lusk C. H., Jiménez-Castillo M., Salazar-Ortega N. (2007). Evidence that branches of evergreen angiosperm and coniferous trees differ in hydraulic conductance but not in Huber values. Can. J. Bot. [Internet] 85 (2), 141–147. doi: 10.1139/B07-002 DOI

Mansfeld V. (2011). Norway Spruce in forest ecosystems of the Czech republic in relation to different forest site conditions. J. For Sci. [Internet] 57 (11), 514–522. doi: 10.17221/14/2011-jfs DOI

Matejka F., Střelcová K., Hurtalová T., Gömöryová E., Ditmarová L. (2009). “Seasonal changes in transpiration and soil water content in a spruce primeval forest during a dry period BT - bioclimatology and natural hazards [Internet]. Seasonal changes in transpiration and soil water content in a spruce primeval forest during a dry period.,”. Eds. Katarína Střelcová, Mátyás C., Kleidon A., Lapin M., František M., Blaženec M., Škvarenina J., Holécy J. (Dordrecht: Springer Netherlands;), 197–206. doi: 10.1007/978-1-4020-8876-6_17 DOI

Matthews B., Netherer S., Katzensteiner K., Pennerstorfer J., Blackwell E., Henschke P., et al. . (2018). Transpiration deficits increase host susceptibility to bark beetle attack: Experimental observations and practical outcomes for Ips typographus hazard assessment. Agric. For Meteorol [Internet] 263, 69–89. doi: 10.1016/j.agrformet.2018.08.004 DOI

McDowell N., Pockman W. T., Allen C. D., Breshears D. D., Cobb N., Kolb T., et al. . (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytol. 178 (4), 719–739. doi: 10.1111/j.1469-8137.2008.02436.x PubMed DOI

Mencuccini M., Rosas T., Rowland L., Choat B., Cornelissen H., Jansen S., et al. . (2019). Leaf economics and plant hydraulics drive leaf: wood area ratios. New Phytol. 224 (4), 1544–1556. doi: 10.1111/nph.15998 PubMed DOI

Modrzyński J. (2007). “Outline of ecology BT - biology and ecology of Norway spruce [Internet]”. Biology and Ecology of Norway Spruce. Eds. Tjoelker M. G., Boratyński A., Bugała W. (Dordrecht: Springer Netherlands; ), 195–253. doi: 10.1007/978-1-4020-4841-8_11 DOI

Nalevanková P., Ježík M., Sitková Z., Vido J., Leštianska A., Střelcová K. (2018). Drought and irrigation affect transpiration rate and morning tree water status of a mature European beech (Fagus sylvatica l.) forest in central Europe. Ecohydrology 11 (6), 1–14. doi: 10.1002/eco.1958 DOI

Nardi D., Jactel H., Pagot E., Samalens J. C., Marini L. (2022). Drought and stand susceptibility to attacks by the European spruce bark beetle: A remote sensing approach. Agric. For Entomol., 25, 1–11. doi: 10.1111/afe.12536 DOI

Nelson J. A., Pérez-Priego O., Zhou S., Poyatos R., Zhang Y., Blanken P. D., et al. . (2020). Ecosystem transpiration and evaporation: Insights from three water flux partitioning methods across FLUXNET sites. Glob Chang Biol. 26 (12), 6916–6930. doi: 10.1111/gcb.15314 PubMed DOI

Netherer S., Schebeck M., Morgante G., Rentsch V., Kirisits T. (2022). European Spruce bark beetle, Ips typographus (L.) males are attracted to bark cores of drought-stressed Norway spruce trees with impaired defenses in Petri dish choice experiments. Forests 13 (4), 1–17. doi: 10.3390/f13040537 DOI

Nilsson L.-O., Wiklund K. (1992). Influence of nutrient and water stress on Norway spruce production in south Sweden – the role of air pollutants. Plant Soil [Internet] 147 (2), 251–265. doi: 10.1007/BF00029077 DOI

Oberhuber W., Hammerle A., Kofler W. (2015). Tree water status and growth of saplings and mature Norway spruce (Picea abies) at a dry distribution limit. Front. Plant Sci. 6. doi: 10.3389/fpls.2015.00703 PubMed DOI PMC

Offenthaler I., Hietz P., Richter H. (2001). Wood diameter indicates diurnal and long-term patterns of xylem potential in Norway spruce. Trees 15, 215–221. doi: 10.1007/s004680100090 DOI

Pashkovskiy P. P., Vankova R., Zlobin I. E., Dobrev P., Ivanov Y. V., Kartashov A. V., et al. . (2019). Comparative analysis of abscisic acid levels and expression of abscisic acid-related genes in scots pine and Norway spruce seedlings under water deficit. Plant Physiol. Biochem. [Internet] 140, 105–112. doi: 10.1016/j.plaphy.2019.04.037 PubMed DOI

Poyatos R., Granda V., Flo V., Adams M. A., Adorján B., Aguadé D., et al. . (2021). Global transpiration data from sap flow measurements: the SAPFLUXNET database. Earth Syst. Sci. Data 13 (6), 2607–2649. doi: 10.5194/essd-13-2607-2021 DOI

Preisler Y., Hölttä T., Grünzweig J. M., Oz I., Tatarinov F., Ruehr N. K., et al. . (2022). The importance of tree internal water storage under drought conditions. Tree Physiol. [Internet] 42 (4), 771–783. doi: 10.1093/treephys/tpab144 PubMed DOI

Puhe J. (2003). Growth and development of the root system of Norway spruce (Picea abies) in forest stands - a review. For Ecol. Manage. 175, 253–273. doi: 10.1016/S0378-1127(02)00134-2 DOI

Ripley B. D. (2002). “Time series in r 1.5.0”. R News 2 (2), 2–7.

Rosell J. A., Olson M. E., Anfodillo T. (2017). Scaling of xylem vessel diameter with plant size: Causes, predictions, and outstanding questions. Curr. For Rep. [Internet] 3 (1), 46–59. doi: 10.1007/s40725-017-0049-0 DOI

Rötzer T., Biber P., Moser A., Schäfer C., Pretzsch H. (2017). Stem and root diameter growth of European beech and Norway spruce under extreme drought. For Ecol. Manage [Internet] 406, 184–195. doi: 10.1016/j.foreco.2017.09.070 DOI

Rutledge R. W., Basore B. L., Mulholland R. J. (1976). Ecological stability: An information theory viewpoint. J. Theor. Biol. [Internet] 57 (2), 355–371. doi: 10.1016/0022-5193(76)90007-2 PubMed DOI

Rybníček M., Čermák P., Žid T., Kolář T. (2010). Radial growth and health condition of Norway spruce (Picea abies (L.) karst.) stands in relation to climate (Silesian beskids, Czech republic). Geochronometria 36 (1), 9–16. doi: 10.2478/v10003-010-0017-1 DOI

Salomón R. L., Peters R. L., Zweifel R., Sass-Klaassen U. G. W., Stegehuis A. I., Smiljanic M., et al. . (2022). The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nat. Commun. 13 (1), 1–11. doi: 10.1038/s41467-021-27579-9 PubMed DOI PMC

Schäfer C., Thurm E. A., Rötzer T., Kallenbach C., Pretzsch H. (2018). Daily stem water deficit of Norway spruce and European beech in intra- and interspecific neighborhood under heavy drought. Scand. J. For Res. [Internet] 33 (6), 568–582. doi: 10.1080/02827581.2018.1444198 DOI

Sedmáková D., Sedmák R., Kúdela P., Ďurica P., Saniga M., Jaloviar P., et al. . (2022). Divergent growth responses of healthy and declining spruce trees to climatic stress: A case study from the Western carpathians. Dendrochronologia 126023, 1–10. doi: 10.1016/j.dendro.2022.126023. ISSN 1125-7865. DOI

Sitková Z., Sitko R., Vejpustková M., Pajtík J., Šrámek V. (2018). Intra- and interannual variability in diameter increment of Fagus sylvatica l. Picea abies L Karst relation to weather variables Cent Eur. For J. 64 (3–4), 223–237. doi: 10.1515/forj-2017-0044 DOI

Spiecker H. (2003). Silvicultural management in maintaining biodiversity and resistance of forests in Europe-temperate zone. J. Environ. Manage. 67 (1), 55–65. doi: 10.1016/s0301-4797(02)00188-3 PubMed DOI

Šrámek V., Hellebrandová K. N., Fadrhonsová V. (2019). Interception and soil water relation in Norway spruce stands of different age during the contrasting vegetation seasons of 2017 and 2018. J. For Sci. 65 (2), 51–60. doi: 10.17221/135/2018-JFS DOI

Stojanović M., Sánchez-Salguero R., Levanič T., Szatniewska J., Pokorný R., Linares J. C. (2017. a). Forecasting tree growth in coppiced and high forests in the Czech republic. the legacy of management drives the coming Quercus petraea climate responses. For Ecol. Manage. 405, 56–68. doi: 10.1016/j.foreco.2017.09.021 DOI

Stojanović M., Szatniewska J., Kyselová I., Pokorný R., Čater M. (2017. b). Transpiration and water potential of young Quercus petraea (M.) liebl. coppice sprouts and seedlings during favourable and drought conditions. J. For Sci. 63 (7), 313–323. doi: 10.17221/36/2017-JFS DOI

Střelcová K., Kurjak D., Leštianska A., Kovalčíková D., Ditmarová Ľ, Škvarenina J., et al. . (2013). Differences in transpiration of Norway spruce drought stressed trees and trees well supplied with water. Biol 68 (6), 1118–1122. doi: 10.2478/s11756-013-0257-4 DOI

Szatniewska J., Zavadilova I., Nezval O., Krejza J., Petrik P., Čater M., et al. . (2022). Species-specific growth and transpiration response to changing environmental conditions in floodplain forest. For Ecol. Manage [Internet] 516, 120248. doi: 10.1016/j.foreco.2022.120248 DOI

Tomasella M., Häberle K. H., Nardini A., Hesse B., Machlet A., Matyssek R. (2017). Post-drought hydraulic recovery is accompanied by non-structural carbohydrate depletion in the stem wood of Norway spruce saplings. Sci. Rep. 7 (1), 1–13. doi: 10.1038/s41598-017-14645-w PubMed DOI PMC

Tombesi S., Frioni T., Poni S., Palliotti A. (2018). Effect of water stress “memory” on plant behavior during subsequent drought stress. Environ. Exp. Bot. [Internet] 150, 106–114. doi: 10.1016/j.envexpbot.2018.03.009 DOI

Treml V., Mašek J., Tumajer J., Rydval M., Čada V., Ledvinka O., et al. . (2022). Trends in climatically driven extreme growth reductions of Picea abies and Pinus sylvestris in central Europe. Glob Chang Biol. [Internet] 28 (2), 557–570. doi: 10.1111/gcb.15922 PubMed DOI

Turcotte A., Rossi S., Deslauriers A., Krause C., Morin H. (2011). Dynamics of depletion and replenishment of water storage in stem and roots of black spruce measured by dendrometers. Front. Plant Sci. 2. doi: 10.3389/fpls.2011.00021 PubMed DOI PMC

Van Lanen H., Laaha G., Kingston D. G., Gauster T., Ionita M., Vidal J., et al. . (2016). Hydrology needed to manage droughts: The 2015 European case. Hydrol. Process. 3104, 3097–3104. doi: 10.1002/hyp.10838 DOI

Venables W. N., Ripley B. D. (2002). Modern applied statistics with s. 4th ed. (New York, USA: Springer-Verlag; ).

Vido J., Střelcová K., Nalevanková P., Leštianska A., Kandrík R., Pástorová A., et al. . (2016). Identifying the relationships of climate and physiological responses of a beech forest using the standardised precipitation index: A case study for Slovakia. J. Hydrol Hydromechanics 64 (3), 246–251. doi: 10.1515/johh-2016-0019 DOI

Viewegh J., Kusbach A., Mikeska M. (2003). Czech Forest ecosystem classification. J. For Sci. 49 (2), 74–82. doi: 10.17221/4682-jfs DOI

Williams A. P., Allen C. D., Macalady A. K., Griffin D., Woodhouse C. A., Meko D. M., et al. . (2013). Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim Change 3 (3), 292–297. doi: 10.1038/nclimate1693 DOI

Wobbrock J. O., Findlater L., Gergle D., Higgins J. J. (2011). “The aligned rank transform for nonparametric factorial analyses using only anova procedures,” in Proc SIGCHI conf hum factors comput syst [Internet] (New York, NY, USA: Association for Computing Machinery; ), 143–146. doi: 10.1145/1978942.1978963 DOI

Zhang Q., Jia X., Shao M., Zhang C., Li X., Ma C. (2018). Sap flow of black locust in response to short-term drought in southern loess plateau of China. Sci. Rep. [Internet] 8 (1), 1–10. doi: 10.1038/s41598-018-24669-5 PubMed DOI PMC

Zweifel R. (2016). Radial stem variations - a source of tree physiological information not fully exploited yet. Plant Cell Environ. 39 (2), 231–232. doi: 10.1111/pce.12613 PubMed DOI

Zweifel R., Häsler R. (2001). Dynamics of water storage in mature subalpine Picea abies: Temporal and spatial patterns of change in stem radius. Tree Physiol. 21 (9), 561–569. doi: 10.1093/treephys/21.9.561 PubMed DOI

Zweifel R., Rigling A., Dobbertin M. (2009). Species-specific stomatal response of trees to drought – a link to vegetation dynamics? J. Veg Sci. [Internet] 20 (3), 442–454. doi: 10.1111/j.1654-1103.2009.05701.x DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...