Ecosystem transpiration and evaporation: Insights from three water flux partitioning methods across FLUXNET sites

. 2020 Dec ; 26 (12) : 6916-6930. [epub] 20201006

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33022860

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000797 SustES-Adaptation strategies
RTI2018-095297-J-I00 Humboldt Research Fellowship for Experienced Researchers
Province of South Tyrol
20FI20_173691 Swiss National Science Foundation - Switzerland
I03859 Austrian National Science
CGL2014-55883-JIN Humboldt Research Fellowship for Experienced Researchers
I 3859 Austrian Science Fund FWF - Austria
LM2015061 Ministry of Education, Youth and Sports of the Czech Republic

We apply and compare three widely applicable methods for estimating ecosystem transpiration (T) from eddy covariance (EC) data across 251 FLUXNET sites globally. All three methods are based on the coupled water and carbon relationship, but they differ in assumptions and parameterizations. Intercomparison of the three daily T estimates shows high correlation among methods (R between .89 and .94), but a spread in magnitudes of T/ET (evapotranspiration) from 45% to 77%. When compared at six sites with concurrent EC and sap flow measurements, all three EC-based T estimates show higher correlation to sap flow-based T than EC-based ET. The partitioning methods show expected tendencies of T/ET increasing with dryness (vapor pressure deficit and days since rain) and with leaf area index (LAI). Analysis of 140 sites with high-quality estimates for at least two continuous years shows that T/ET variability was 1.6 times higher across sites than across years. Spatial variability of T/ET was primarily driven by vegetation and soil characteristics (e.g., crop or grass designation, minimum annual LAI, soil coarse fragment volume) rather than climatic variables such as mean/standard deviation of temperature or precipitation. Overall, T and T/ET patterns are plausible and qualitatively consistent among the different water flux partitioning methods implying a significant advance made for estimating and understanding T globally, while the magnitudes remain uncertain. Our results represent the first extensive EC data-based estimates of ecosystem T permitting a data-driven perspective on the role of plants' water use for global water and carbon cycling in a changing climate.

A N Severtsov Institute of Ecology and Evolution Russian Academy of Sciences Moscow Russia

Basque Centre for Climate Change Scientific Campus of the University of the Basque Country Leioa Spain

Bioclimatology University of Goettingen Göttingen Germany

CEFE UMR 5175 CNRS Univ Montpellier Univ Paul Valéry Montpellier 3 EPHE IRD Montpellier France

Centre of Biodiversity and Sustainable Land Use University of Goettingen Goettingen Germany

CREAF Cerdanyola del Vallès Spain

Department of Atmospheric and Oceanic Sciences University of Wisconsin Madison Madison WI USA

Department of Biogeochemical Integration Max Planck Institute for Biogeochemistry Jena Germany

Department of Biological Sciences Macquarie University Sydney NSW Australia

Department of Earth and Environmental Engineering Columbia University New York NY USA

Department of Ecology University of Innsbruck Innsbruck Austria

Department of Environmental Systems Science ETH Zurich Zurich Switzerland

Department of Geography University of Colorado Boulder CO USA

Department of Geography University of Zurich Zurich Switzerland

Department of Landscape Design and Sustainable Ecosystems Agrarian Technological Institute RUDN University Moscow Russia

Department of Matter and Energy Fluxes Global Change Research Institute of the Czech Academy of Sciences Brno Czech Republic

Department of Sustainable Agro Ecosystems and Bioresources Research and Innovation Centre Fondazione Edmund Mach San Michele all'Adige Italy

Earth Institute Columbia University New York NY USA

Ecologie Systématique Evolution Univ Paris Sud CNRS AgroParisTech Université Paris Saclay Orsay France

Faculdade de Ciências e Tecnologia FCT Universidade Nova de Lisboa Lisbon Portugal

Faculty of Land and Food Systems University of British Columbia Vancouver BC Canada

Forest Service Autonomous Province of Bolzano Bozen Bolzano Bozen Italy

IKERBASQUE Basque Foundation for Science Bilbao Spain

Institute for Agricultural and Forest Systems in the Mediterranean Ercolano Italy

Institute for Atmospheric and Earth System Research INAR Physics Faculty of Science University of Helsinki Helsinki Finland

Institute of Agricultural Sciences ETH Zurich Zurich Switzerland

Institute of Bioeconomy Firenze Italy

Karlsruhe Institute of Technology Institute of Meteorology and Climate Research Atmospheric Environmental Research Garmisch Partenkirchen Germany

Laboratory of Geo Information Science and Remote Sensing Wageningen University and Research Center Wageningen The Netherlands

Lamont Doherty Earth Observatory of Columbia University Palisades NY USA

Michael Stifel Center Jena for Data Driven and Simulation Science Jena Germany

Southwest Watershed Research Center USDA ARS Tucson AZ USA

Universitat Autònoma de Barcelona Cerdanyola del Vallès Spain

Université de Lorraine AgroParisTech INRA UMR Silva Nancy France

Zobrazit více v PubMed

Allen, C. D., Breshears, D. D., & McDowell, N. G. (2015). On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere, 6(8), art129. https://doi.org/10.1890/ES15-00203.1

Anderson, R. G., Zhang, X., & Skaggs, T. H. (2017). Measurement and partitioning of evapotranspiration for application to vadose zone studies. Vadose Zone Journal, 16(13), 1-9. https://doi.org/10.2136/vzj2017.08.0155

Baldocchi, D. (2008). ‘Breathing’ of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement systems. Australian Journal of Botany, 56(1), 1. https://doi.org/10.1071/BT07151

Baldocchi, D. D. (2020). How eddy covariance flux measurements have contributed to our understanding of Global Change Biology. Global Change Biology, 26, 242-260. https://doi.org/10.1111/gcb.14807

Berkelhammer, M., Noone, D. C., Wong, T. E., Burns, S. P., Knowles, J. F., Kaushik, A., … Williams, M. W. (2016). Convergent approaches to determine an ecosystem’s transpiration fraction: Transpiration fraction of two forests. Global Biogeochemical Cycles, 30(6), 933-951. https://doi.org/10.1002/2016GB005392

Bernacchi, C. J., & VanLoocke, A. (2015). Terrestrial ecosystems in a changing environment: A dominant role for water. Annual Review of Plant Biology, 66(1), 599-622. https://doi.org/10.1146/annurev-arplant-043014-114834

Blanken, P. D., Black, T. A., Yang, P. C., Neumann, H. H., Nesic, Z., Staebler, R., … Lee, X. (1997). Energy balance and canopy conductance of a boreal aspen forest: Partitioning overstory and understory components. Journal of Geophysical Research: Atmospheres, 102(D24), 28915-28927.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.

Čermák, J., Kučera, J., & Nadezhdina, N. (2004). Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees, 18(5), 529-546. https://doi.org/10.1007/s00468-004-0339-6

Cescatti, A., Marcolla, B., Santhana Vannan, S. K., Pan, J. Y., Román, M. O., Yang, X., … Schaaf, C. B. (2012). Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network. Remote Sensing of Environment, 121, 323-334. https://doi.org/10.1016/j.rse.2012.02.019

Chu, H., Baldocchi, D. D., John, R., Wolf, S., & Reichstein, M. (2017). Fluxes all of the time? A primer on the temporal representativeness of FLUXNET: Fluxes all of the time? Journal of Geophysical Research: Biogeosciences, 122(2), 289-307. https://doi.org/10.1002/2016JG003576

Coenders-Gerrits, A. M. J., van der Ent, R. J., Bogaard, T. A., Wang-Erlandsson, L., Hrachowitz, M., & Savenije, H. H. G. (2014). Uncertainties in transpiration estimates. Nature, 506(7487), E1-E2.

Cowan, I. R., & Farquhar, G. D. (1977). Stomatal function in relation to leaf metabolism and environment. Symposia of the Society for Experimental Biology, 31, 471-505.

De Kauwe, M. G., Medlyn, B. E., Pitman, A. J., Drake, J. E., Ukkola, A., Griebel, A., … Roderick, M. (2019). Examining the evidence for decoupling between photosynthesis and transpiration during heat extremes. Biogeosciences, 16(4), 903-916. https://doi.org/10.5194/bg-16-903-2019

Eller, C. B., Rowland, L., Oliveira, R. S., Bittencourt, P. R. L., Barros, F. V., da Costa, A. C. L., … Cox, P. (2018). Modelling tropical forest responses to drought and El Niño with a stomatal optimization model based on xylem hydraulics. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1760), 20170315. https://doi.org/10.1098/rstb.2017.0315

Fatichi, S., & Pappas, C. (2017). Constrained variability of modeled T:ET ratio across biomes: Transpiration:Evapotranspiration Ratio. Geophysical Research Letters, 44(13), 6795-6803.

Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., … Wood, E. F. (2017). The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources: The future of evapotranspiration. Water Resources Research, 53(4), 2618-2626. https://doi.org/10.1002/2016WR020175

Flo, V., Martinez-Vilalta, J., Steppe, K., Schuldt, B., & Poyatos, R. (2019). A synthesis of bias and uncertainty in sap flow methods. Agricultural and Forest Meteorology, 271, 362-374. https://doi.org/10.1016/j.agrformet.2019.03.012

Friend, A. D., Arneth, A., Kiang, N. Y., Lomas, M., Ogée, J., Rödenbeck, C., … Zaehle, S. (2007). FLUXNET and modelling the global carbon cycle. Global Change Biology, 13(3), 610-633. https://doi.org/10.1111/j.1365-2486.2006.01223.x

Good, S. P., Moore, G. W., & Miralles, D. G. (2017). A mesic maximum in biological water use demarcates biome sensitivity to aridity shifts. Nature Ecology & Evolution, 1(12), 1883-1888. https://doi.org/10.1038/s41559-017-0371-8

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27. https://doi.org/10.1016/j.rse.2017.06.031

Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., … Kempen, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS One, 12(2), e0169748. https://doi.org/10.1371/journal.pone.0169748

Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X., & Ferreira, L. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2), 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2

Jin, S., & Sader, S. A. (2005). Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances. Remote Sensing of Environment, 94(3), 364-372. https://doi.org/10.1016/j.rse.2004.10.012

Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D., Arain, M. A., Arneth, A., … Williams, C. (2011). Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. Journal of Geophysical Research, 116. https://doi.org/10.1029/2010JG001566

Jung, M., & Zscheischler, J. (2013). A guided hybrid genetic algorithm for feature selection with expensive cost functions. Procedia Computer Science, 18, 2337-2346. https://doi.org/10.1016/j.procs.2013.05.405

Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W., Schmid, H. P., & Richardson, A. D. (2013). Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature, 499(7458), 324-327.

Knauer, J., Zaehle, S., Medlyn, B. E., Reichstein, M., Williams, C. A., Migliavacca, M., … Linderson, M.-L. (2018). Towards physiologically meaningful water-use efficiency estimates from eddy covariance data. Global Change Biology, 24(2), 694-710. https://doi.org/10.1111/gcb.13893

Kool, D., Agam, N., Lazarovitch, N., Heitman, J., Sauer, T., & Ben-Gal, A. (2014). A review of approaches for evapotranspiration partitioning. Agricultural and Forest Meteorology, 184, 56-70. https://doi.org/10.1016/j.agrformet.2013.09.003

Kumar, J., Hoffman, F. M., Hargrove, W. W., & Collier, N. (2016). Understanding the representativeness of FLUXNET for upscaling carbon flux from eddy covariance measurements. Earth System Science Data Discussions, 1-25.

Lasslop, G., Reichstein, M., Papale, D., Richardson, A. D., Arneth, A., Barr, A., … Wohlfahrt, G. (2010). Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: Critical issues and global evaluation: Separation of NEE into GPP and RECO. Global Change Biology, 16(1), 187-208. https://doi.org/10.1111/j.1365-2486.2009.02041.x

Li, X., Gentine, P., Lin, C., Zhou, S., Sun, Z., Zheng, Y., … Zheng, C. (2019). A simple and objective method to partition evapotranspiration into transpiration and evaporation at eddy-covariance sites. Agricultural and Forest Meteorology, 265, 171-182. https://doi.org/10.1016/j.agrformet.2018.11.017

Lian, X., Piao, S., Huntingford, C., Li, Y., Zeng, Z., Wang, X., … Wang, T. (2018). Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nature Climate Change, 8(7), 640-646. https://doi.org/10.1038/s41558-018-0207-9

McCulloh, K. A., Winter, K., Meinzer, F. C., Garcia, M., Aranda, J., & Lachenbruch, B. (2007). A comparison of daily water use estimates derived from constant-heat sap-flow probe values and gravimetric measurements in pot-grown saplings. Tree Physiology, 27(9), 1355-1360. https://doi.org/10.1093/treephys/27.9.1355

Medlyn, B. E., De Kauwe, M. G., Lin, Y.-S., Knauer, J., Duursma, R. A., Williams, C. A., … Wingate, L. (2017). How do leaf and ecosystem measures of water-use efficiency compare? New Phytologist, 216(3), 758-770. https://doi.org/10.1111/nph.14626

Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C., Barton, C. V. M., … Wingate, L. (2011). Reconciling the optimal and empirical approaches to modelling stomatal conductance: Reconciling optimal and empirical stomatal models. Global Change Biology, 17(6), 2134-2144. https://doi.org/10.1111/j.1365-2486.2010.02375.x

Meinshausen, N. (2006). Quantile regression forests. Journal of Machine Learning Research, 7(Jun), 983-999.

Myneni, R., & Knyazikhin, Y. (2015). MCD15A3H MODIS/Terra+Aqua leaf area Index/FPAR 4-day L4 global 500m SIN grid V006.

Nash, J., & Sutcliffe, J. (1970). River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology, 10(3), 282-290. https://doi.org/10.1016/0022-1694(70)90255-6

Nelson, J. A. (2019). Jnelson18/TranspirationEstimationAlgorithm: Force T to 0 at night. Zenodo. https://doi.org/10.5281/ZENODO.2560321

Nelson, J. A. (2020a). Ecosystem transpiration from FLUXNET. Zenodo. https://doi.org/10.5281/zenodo.3978408

Nelson, J. A. (2020b). Jnelson18/ecosystem-transpiration: Additional installation instructions. Zenodo. https://doi.org/10.5281/ZENODO.3921923

Nelson, J. A., Carvalhais, N., Cuntz, M., Delpierre, N., Knauer, J., Ogée, J., & Jung, M. (2018). Coupling water and carbon fluxes to constrain estimates of transpiration: The TEA algorithm. Journal of Geophysical Research. Biogeosciences, 123, 3617-3632. https://doi.org/10.1029/2018JG004727

Oren, R., Phillips, N., Katul, G., Ewers, B. E., & Pataki, D. E. (1998). Scaling xylem sap flux and soil water balance and calculating variance: A method for partitioning water flux in forests. Annales des Sciences Forestières, 55(1-2), 191-216. https://doi.org/10.1051/forest:19980112

Paschalis, A., Fatichi, S., Pappas, C., & Or, D. (2018). Covariation of vegetation and climate constrains present and future T/ET variability. Environmental Research Letters, 13(10), 104012. https://doi.org/10.1088/1748-9326/aae267

Pastorello, G., Papale, D., Chu, H., Trotta, C., Agarwal, D., Canfora, E., … Torn, M. (2017). The FLUXNET2015 dataset: The longest record of global carbon, water, and energy fluxes is updated. Eos, 98.

Paul-Limoges, E., Wolf, S., Schneider, F. D., Longo, M., Moorcroft, P., Gharun, M., & Damm, A. (2020). Partitioning evapotranspiration with concurrent eddy covariance measurements in a mixed forest. Agricultural and Forest Meteorology, 280, 107786. https://doi.org/10.1016/j.agrformet.2019.107786

Perez-Priego, O., Katul, G., Reichstein, M., El-Madany, T. S., Ahrens, B., Carrara, A., … Migliavacca, M. (2018). Partitioning eddy covariance water flux components using physiological and micrometeorological approaches. Journal of Geophysical Research. Biogeosciences, 123, 3353-3370. https://doi.org/10.1029/2018JG004637

Pérez-Priego, O., Testi, L., Orgaz, F., & Villalobos, F. J. (2010). A large closed canopy chamber for measuring CO2 and water vapour exchange of whole trees. Environmental and Experimental Botany, 68(2), 131-138. https://doi.org/10.1016/j.envexpbot.2009.10.009

Perez-Priego, O., & Wutzler, T. (2019). ETpartitioning: Partitioning of eddy covariance ET into flux components. Retrieved from https://github.com/oscarperezpriego/ETpartitioning

Pinty, B., Andredakis, I., Clerici, M., Kaminski, T., Taberner, M., Verstraete, M. M., … Widlowski, J.-L. (2011). Exploiting the MODIS albedos with the Two-stream Inversion Package (JRC-TIP): 1. Effective leaf area index, vegetation, and soil properties. Journal of Geophysical Research, 116(D9).

Poyatos, R., Granda, V., Flo, V., Molowny-Horas, R., Steppe, K., Mencuccini, M., & Martínez-Vilalta, J. (2019). SAPFLUXNET: A global database of sap flow measurements. Zenodo. https://doi.org/10.5281/zenodo.2530798

Poyatos, R., Granda, V., Molowny-Horas, R., Mencuccini, M., Steppe, K., & Martínez-Vilalta, J. (2016). SAPFLUXNET: Towards a global database of sap flow measurements. Tree Physiology, 36(12), 1449-1455. https://doi.org/10.1093/treephys/tpw110

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., … Valentini, R. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Global Change Biology, 11(9), 1424-1439. https://doi.org/10.1111/j.1365-2486.2005.001002.x

Scanlon, T. M., & Kustas, W. P. (2010). Partitioning carbon dioxide and water vapor fluxes using correlation analysis. Agricultural and Forest Meteorology, 150(1), 89-99. https://doi.org/10.1016/j.agrformet.2009.09.005

Scanlon, T. M., Schmidt, D. F., & Skaggs, T. H. (2019). Correlation-based flux partitioning of water vapor and carbon dioxide fluxes: Method simplification and estimation of canopy water use efficiency. Agricultural and Forest Meteorology, 279, 107732. https://doi.org/10.1016/j.agrformet.2019.107732

Schlesinger, W. H., & Jasechko, S. (2014). Transpiration in the global water cycle. Agricultural and Forest Meteorology, 189-190, 115-117. https://doi.org/10.1016/j.agrformet.2014.01.011

Scott, R. L., & Biederman, J. A. (2017). Partitioning evapotranspiration using long-term carbon dioxide and water vapor fluxes: New approach to ET partitioning. Geophysical Research Letters, 44(13), 6833-6840. https://doi.org/10.1002/2017GL074324

Sperry, J. S., Venturas, M. D., Anderegg, W. R. L., Mencuccini, M., Mackay, D. S., Wang, Y., & Love, D. M. (2017). Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost: A stomatal optimization model. Plant, Cell & Environment, 40(6), 816-830. https://doi.org/10.1111/pce.12852

Steppe, K., De Pauw, D. J., Doody, T. M., & Teskey, R. O. (2010). A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods. Agricultural and Forest Meteorology, 150(7-8), 1046-1056. https://doi.org/10.1016/j.agrformet.2010.04.004

Stoy, P. C., El-Madany, T. S., Fisher, J. B., Gentine, P., Gerken, T., Good, S. P., … Wolf, S. (2019). Reviews and syntheses: Turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities. Biogeosciences, 16(19), 3747-3775. https://doi.org/10.5194/bg-16-3747-2019

Talsma, C. J., Good, S. P., Jimenez, C., Martens, B., Fisher, J. B., Miralles, D. G., … Purdy, A. J. (2018). Partitioning of evapotranspiration in remote sensing-based models. Agricultural and Forest Meteorology, 260-261, 131-143. https://doi.org/10.1016/j.agrformet.2018.05.010

Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127-150. https://doi.org/10.1016/0034-4257(79)90013-0

Villalobos, F., Perez-Priego, O., Testi, L., Morales, A., & Orgaz, F. (2012). Effects of water supply on carbon and water exchange of olive trees. European Journal of Agronomy, 40, 1-7. https://doi.org/10.1016/j.eja.2012.02.004

Wang, L., Good, S. P., & Caylor, K. K. (2014). Global synthesis of vegetation control on evapotranspiration partitioning: Vegetation and ET partitioning. Geophysical Research Letters, 41(19), 6753-6757. https://doi.org/10.1002/2014GL061439

Wang, L., Good, S. P., Caylor, K. K., & Cernusak, L. A. (2012). Direct quantification of leaf transpiration isotopic composition. Agricultural and Forest Meteorology, 154, 127-135. https://doi.org/10.1016/j.agrformet.2011.10.018

Wei, Z., Yoshimura, K., Wang, L., Miralles, D. G., Jasechko, S., & Lee, X. (2017). Revisiting the contribution of transpiration to global terrestrial evapotranspiration: Revisiting global ET partitioning. Geophysical Research Letters, 44(6), 2792-2801. https://doi.org/10.1002/2016GL072235

Whelan, M. E., Lennartz, S. T., Gimeno, T. E., Wehr, R., Wohlfahrt, G., Wang, Y., … Campbell, J. E. (2018). Reviews and syntheses: Carbonyl sulfide as a multi-scale tracer for carbon and water cycles. Biogeosciences, 15(12), 3625-3657.

Wilson, K. B., Hanson, P. J., Mulholland, P. J., Baldocchi, D. D., & Wullschleger, S. D. (2001). A comparison of methods for determining forest evapotranspiration and its components: Sap-flow, soil water budget, eddy covariance and catchment water balance. Agricultural and Forest Meteorology, 106(2), 153-168. https://doi.org/10.1016/S0168-1923(00)00199-4

Zhou, S., Yu, B., Huang, Y., & Wang, G. (2014). The effect of vapor pressure deficit on water use efficiency at the subdaily time scale: Underlying water use efficiency. Geophysical Research Letters, 41(14), 5005-5013. https://doi.org/10.1002/2014GL060741

Zhou, S., Yu, B., Huang, Y., & Wang, G. (2015). Daily underlying water use efficiency for AmeriFlux sites: Daily underlying WUE. Journal of Geophysical Research: Biogeosciences, 120(5), 887-902.

Zhou, S., Yu, B., Zhang, Y., Huang, Y., & Wang, G. (2016). Partitioning evapotranspiration based on the concept of underlying water use efficiency: ET partitioning. Water Resources Research, 52(2), 1160-1175. https://doi.org/10.1002/2015WR017766

Zhou, S., Yu, B., Zhang, Y., Huang, Y., & Wang, G. (2018). Water use efficiency and evapotranspiration partitioning for three typical ecosystems in the Heihe River Basin, northwestern China. Agricultural and Forest Meteorology, 253-254, 261-273. https://doi.org/10.1016/j.agrformet.2018.02.002

Zhu, Z., Wang, S., & Woodcock, C. E. (2015). Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images. Remote Sensing of Environment, 159, 269-277. https://doi.org/10.1016/j.rse.2014.12.014

Zhu, Z., & Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sensing of Environment, 118, 83-94. https://doi.org/10.1016/j.rse.2011.10.028

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Sap flow and growth response of Norway spruce under long-term partial rainfall exclusion at low altitude

. 2023 ; 14 () : 1089706. [epub] 20230214

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...