Ecological and conceptual consequences of Arctic pollution

. 2020 Dec ; 23 (12) : 1827-1837. [epub] 20200925

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu dopisy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32975023

Grantová podpora
19-77-30015 Forest Service
Ministry of Science and Higher Education
Russian Science Foundation

Although the effect of pollution on forest health and decline received much attention in the 1980s, it has not been considered to explain the 'Divergence Problem' in dendroclimatology; a decoupling of tree growth from rising air temperatures since the 1970s. Here we use physical and biogeochemical measurements of hundreds of living and dead conifers to reconstruct the impact of heavy industrialisation around Norilsk in northern Siberia. Moreover, we develop a forward model with surface irradiance forcing to quantify long-distance effects of anthropogenic emissions on the functioning and productivity of Siberia's taiga. Downwind from the world's most polluted Arctic region, tree mortality rates of up to 100% have destroyed 24,000 km2 boreal forest since the 1960s, coincident with dramatic increases in atmospheric sulphur, copper, and nickel concentrations. In addition to regional ecosystem devastation, we demonstrate how 'Arctic Dimming' can explain the circumpolar 'Divergence Problem', and discuss implications on the terrestrial carbon cycle.

Zobrazit více v PubMed

Acosta Navarro, J.C., Varma, V., Riipinen, I., Seland, Ø., Kirkevåg, A., Struthers, H. et al. (2016). Amplification of Arctic warming by past air pollution reductions in Europe. Nat. Geosci., 9, 277-281.

Arnold, S.R., Law, K.S., Brock, C.A., Thomas, J.L., Starkweather, S.M., von Salzen, K. et al. (2016). Arctic air pollution: Challenges and opportunities for the next decade. Elementa, 4, 000104.

Arutyunyan, R.V., Vorobieva, L.M., Panchenko, S.V., Bakin, R.V., Novikov, S.M., Shashina, T.A. et al. (2014). Comparative analysis of radiation and chemical risks to public health in Krasnoyarskiy Kray. Radiation Risk, 23, 123-136.

Basheer, I.A. & Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods, 43, 3-31.

Bauduin, S., Clarisse, L., Clerbaux, C., Hurtmans, D. & Coheur, P.-F. (2014). IASI observations of sulfur dioxide (SO2) in the boundary layer of Norilsk. J. Geophys. Res. Atmos., 119, 4253-4263.

Beck, P.S.A., Juday, G.P., Alix, C., Barber, V.A., Winslow, S.E., Sousa, E.E. et al. (2011). Changes in forest productivity across Alaska consistent with biome shift. Ecol. Lett., 14, 373-379.

Blacksmith Institute, Green Cross Switzerland (2013). The world’s worst 2013: The top ten toxic threats. Cleanup, Progress and Ongoing Challenges. Blacksmith Institute, New York.

Borg, I. & Mair, P. (2017). The choice of initial configurations in Multidimensional Scaling: local minima, fit, and interpretability. Austrian J. Stat., 46, 19-32.

Bradshaw, C.J.A. & Warkentin, I.G. (2015). Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Change, 128, 24-30.

Briffa, K.R., Schweingruber, F., Jones, P., Osborn, T.J., Shiyatov, S.G. & Vaganov, E.A. (1998). Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature, 391, 678-682.

Büntgen, U., Frank, D.C., Wilson, R., Career, M., Urbinati, C. & Esper, J. (2008). Testing for tree-ring divergence in the European Alps. Glob. Change Biol., 14, 2443-2453.

Büntgen, U., Wilson, R., Wilmking, M., Niedzwiedz, T. & Bräuning, A. (2009). The ‘Divergence Problem’ in tree-ring research. TRACE, 7, 212-219.

Büntgen, U., Tegel, W., Kaplan, J.O., Schaub, M., Hagedorn, F., Bürgi, M. et al. (2014). Placing unprecedented recent fir growth in a European-wide and Holocene-long context. Front. Ecol. Environ., 12, 100-106.

Büntgen, U., Johnson, D., Gonzalez-Rouco, J.F., Luterbacher, J. & Stenseth, N.C. (2020). Extending the climatological concept of ‘Detection and Attribution’ to global change ecology in the Anthropocene. Functional Ecol., 1-13. https://doi.org/10.1111/1365-2435.13647

Browse, J., Carslaw, K.S., Mann, G.W., Birch, C.E., Arnold, S.R. & Leck, C. (2014). The complex response of Arctic aerosol to sea-ice retreat. Atmos. Chem. Phys., 14, 7543-7557.

Charney, N.D., Babst, F., Poulter, B., Record, S., Trouet, V.M., Frank, D. et al. (2016). Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecol. Lett., 19, 1119-1128.

Compo, G.P., Whitaker, J.S., Sardeshmukh, P.D., Matsui, N., Allan, R.J., Yin, X. et al. (2011). The twentieth century reanalysis project. Q. J. R. Meteorol. Soc., 137, 1-28.

Cook, E. & Peters, K. (1997). Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene, 7, 361-370.

D’Arrigo, R., Wilson, R., Liepert, B. & Cherubini, P. (2008). On the ‘Divergence Problem’ in northern forests: A review of the tree-ring evidence and possible causes. Glob. Planet. Change, 60, 289-305.

Dolgikh, V.I. (2006). Phenomenon of Norilsk: History of the Norilsk industrial region. Polar star, Moscow.

Driscoll, W., Wiles, G., D'Arrigo, R. & Wilmking, M. (2005). Divergent tree growth response to recent climatic warming, Lake Clark National Park and Preserve. Alaska. Geophys. Res. Lett., 32, L20703.

Esper, J. & Frank, D. (2009). Divergence pitfalls in tree-ring research. Clim. Change, 94, 261-266.

Etschberger, S. & Hilbert, A. (2003). Evolutionary Strategies to Avoid Local Minima in Multidimensional Scaling. In: Between Data Science and Applied Data Analysis (eds Schader, M., Gaul, W., & Vichi, M.). Springer-Verlag, Berlin, Heidelberg, pp. 209-217. https://doi.org/10.1007/978-3-642-18991-3_24.

Evans, M.N., Reichert, B.K., Kaplan, A., Anchukaitis, K.J., Vaganov, E.A., Hughes, M.K. et al. (2006). A forward modeling approach to paleoclimatic interpretation of tree-ring data. J. Geophys. Res. Biogeosci., 111, G03008.

Flanner, M.G. (2013). Arctic climate sensitivity to local black carbon. J. Geophys. Res. Lett. A., 118, 1840-1851.

Fritts, H.C. (1976). Tree Rings and Climate. Cambridge, MA: Academic Press.

Garrett, T.J. & Verzella, L.L. (2008). An evolving history of Arctic aerosols. Bull. American Meteorol. Soci., 89, 299-302.

Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A.Z. & Schepaschenko, D.G. (2015). Boreal forest health and global change. Science, 349, 819-822.

Girardin, M.P., Bouriaud, O., Hogg, T., Kurz, W.A., Zimmermann, N.E., Metsaranta, J. et al. (2016). No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc. Natl Acad. Sci. U.S.A., 113, E8406-E8414.

Harris, I., Jones, P.D., Osborna, T.J. & Lister, D.H. (2014). Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset. Int. J. Climatol., 34, 623-642.

Hirdman, D., Sodemann, H., Eckhardt, S., Burkhart, J.F., Jefferson, A., Mefford, T. et al. (2010). Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output. (2010). Atmos. Chem. Phys., 10, 669-693.

Innes, J. (1987). Air Pollution and Forestry. Forestry Commission Bulletin, No. 70. Forestry Commission, HMSO Books, London.

Kharuk, V.I., Nilsson, S. & Samarskaia, E. Anthropogenic and Technogenic Stress Factors to Forests in Siberia. IIASA Working Paper WP-96-104 (1996).

Kirdyanov, A., Hughes, H., Vaganov, E., Schweingruber, F. & Silkin, P. (2003). The importance of early summer temperature and date of snow melt for tree growth in Siberian Subarctic. Trees, 17, 61-69.

Kirdyanov, A.V., Myglan, V.S., Pimenov, A.V., Knorre, A.A., Ekarta, A.K. & Vaganova, E.A. (2014). Die-off dynamics of Siberian larch under the impact of pollutants emitted by Norilsk enterprises. Contemp. Probl. Ecol., 7, 679-684.

Kirdyanov, A.V., Saurer, M., Siegwolf, R., Knorre, A.A., Prokushkin, A.S., Churakova (Sidorova), O.V. et al. (2020). Long-term ecological consequences of forest fires in the continuous permafrost zone of Siberia. Environ. Res. Lett., 15, 034061.

Kloeppel, B.D., Gower, S.T., Treichel, I.W. & Kharuk, S. (1998). Foliar carbon isotope discrimination in Larix species and sympatric evergreen conifers: A global comparison. Oecologia, 114, 153-159.

Knorre, A.A., Kirdyanov, A.V. & Vaganov, E.A. (2006). Climatically-induced interannual variation in aboveground biomass productivity in the forest-tundra and northern taiga of central Siberia. Oecologia, 147, 86-95.

Knorre, A.A., Kirdyanov, A.V., Prokushkin, A.S. & Büntgen, U. (2019). Tree ring-based reconstruction of the long-term influence of wildfires on permafrost active layer dynamics in Central Siberia. Sci. Total Environ., 652, 314-319.

Korets, M.A., Ryzhkova, V.A. & Danilova, I.V. (2014). GIS-Based approaches to the assessment of the state of terrestrial ecosystems in the Norilsk industrial region. Contemp. Probl. Ecol., 7, 643-653.

Law, K.S. & Stohl, A. (2007). Arctic air pollution: origins and impacts. Science, 315, 1537-1540.

Lewis, J. (1990). The spirit of the first Earth Day. EPA J., 16, 8-12.

Lihavainen, J., Ahonen, V., Keski-Saari, S., Kontunen-Soppela, S., Oksanen, E. & Keinänen, M. (2016). Low vapour pressure deficit affects nitrogen nutrition and foliar metabolites in silver birch. J. Exp. Bot., 67, 4353-4365.

Lloyd, A. & Bunn, A. (2007). Responses of the circumpolar boreal forest to 20th century climate variability. Environ. Res Lett., 2, 045013.

Malavelle, F.F., Haywood, M., Jones, A., Gettelman, A., Clarisse, L., Bauduin, S. et al. (2017). Strong constraints on aerosol-cloud interactions from volcanic eruptions. Nature, 546, 485-491.

McConnell, J.R., Edwards, R., Kok, G.L., Flanner, M.G., Zender, C.S., Saltzman, E.S. et al. (2007). 20th-century industrial black carbon emissions altered Arctic climate forcing. Science, 317, 1381-1384.

Ministry of Ecology and Environmental Management of the Krasnoyarsk region (2019). The Governmental report on the state and protection of the environment in Krasnoyarsk region in 2018. Polygraph-Avanta Ltd., Krasnoyarsk.

Miranda, V. & Chaphekar, M. (1980). SEM study of the inner periclinal surface of leaf cuticles in the family Pinaceae. Bot. J. Linn. Soc., 81, 61-78.

Najafi, M.R., Zwiers, F.W. & Gillett, N.P. (2015). Attribution of Arctic temperature change to greenhouse-gas and aerosol influences. Nat. Clim. Change, 5, 246-249.

Panyushkina, I.P., Shishov, V.V., Grachev, A.M., Knorre, A.A., Kirdyanov, A.V., Leavitt, S.W. et al. (2016). Trends in elemental concentrations of tree rings from the Siberian Arctic. Tree Ring Res., 72, 67-77.

Pisaric, M.F.J., Carey, S.K., Kokelj, S.V. & Youngblut, D. (2007). Anomalous 20th century tree growth, Mackenzie Delta, Northwest Territories. Canada. Geophys. Res. Lett., 34, L05714.

Ponmarev, E.I., Shvetsov, E.G. & Kharuk, V.I. (2018). The intensity of wildfires in fire emissions estimates. Russ. J. Ecol., 49, 492-499.

Price, K., Storn, R.M. & Lampinen, J.A. (2005). Differential Evolution. A Practical Approach to Global Optimization, Natural Computing Series, Springer, Berlin Heidelberg.

Quinn, P.K., Shaw, G., Andrews, E., Dutton, E.G., Ruoho-Airola, T. & Long, S.L. (2007). Arctic haze: current trends and knowledge gaps. Tellus B, 59, 99-114.

Ramanathan, V., Crutzen, P.J., Kiehl, J.T. & Rosenfeld, D. (2001). Aerosol, climate and the hydrological cycle. Science, 294, 2119-2124.

Rinke, A., Dethloff, K. & Fortmann, M. (2004). Regional climate effects of Arctic haze. Geophys. Res. Let., 31, L16202.

Roderick, M.L. & Farquhar, G.D. (2002). The cause of decreased pan evaporation over the past 50 years. Science, 298, 1410-1411.

Shevchenko, V., Lisitzin, A., Vinogradova, A. & Stein, R. (2003). Heavy metals in aerosols over the seas of the Russian Arctic. Sci. Total Environ., 306, 11-25.

Shindell, D. (2007). Local and remote contributions to Arctic warming. Geophys. Res. Let., 34, L14704.

Shvetsov, E.G., Kukavskaya, E.A., Buryak, L.V. & Barrett, K. (2019). Assessment of post-fire vegetation recovery in Southern Siberia using remote sensing observations. Environ. Res. Lett., 14, 055001.

Siccama, T.G., Bliss, M. & Vogelmann, H.W. (1982). Decline of red spruce in the Green Mountains of Vermont. Bull. Torrey Bot. Club, 109, 162-168.

Smith, K.T., Čufar, K. & Levanič, T. (1999). Temporal stability and dendroclimatology in silver fir and red spruce. Phyton [Austria], 39, 117-122.

Smith, S.J., van Aardenne, J., Klimont, Z., Andres, R.J., Volke, A. & Delgado, A.S. (2011). Anthropogenic sulfur dioxide emissions: 1850-2005. Atmos. Chem. Phys., 11, 1101-1116.

Stanhill, G. (2005). Global dimming: A new aspect of climate change. Weather, 60, 11-14.

Stine, A.R. & Huybers, P. (2014). Arctic tree rings as recorders of variations in light availability. Nat. Commun., 5, 3836.

Stohl, A. (2006). Characteristics of atmospheric transport into the Arctic troposphere. J. Geophys. Res. Atmos., 111, D11306.

Stohl, A., Klimont, Z., Eckhardt, S., Kupiainen, K., Shevchenko, V.P., Kopeikin, V.M. et al. (2013). Black carbon in the Arctic: The underestimated role of gas flaring and residential combustion emissions. Atmos. Chem. Phys., 13, 8833-8855.

Storn, R. & Price, K. (1997). Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim., 11, 341-359.

Taylor, P.C., Kato, S., Xu, K.-M. & Cai, M. (2015). Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level. J. Geophys. Res. Atmos., 120(24), 12656-12678.https://doi.org/10.1002/2015JD023520.

Telyatnikov, M.Y. & Prystyazhnyuk, S.A. (2014). Anthropogenous influence of Norilsk industrial area on plant vegetation cover of the tundra and forest tundra. Contemp. Probl. Ecol., 7, 654-668.

Tolwinski-Ward, S.E., Evans, M.N., Hughes, M.K. & Anchukaitis, K.J. (2011). An efficient forward model of the climate controls on interannual variation in tree-ring width. Clim. Dyn., 36, 2419-2439.

Tolwinski-Ward, S.E., Anchukaitis, K.J. & Evans, M.N. (2013). Bayesian parameter estimation and interpretation for an intermediate model of tree-ring width. Clim. Past, 9, 1481-1493.

Trenberth, K.E. & Fasullo, J.T. (2009). Global warming due to increasing absorbed solar radiation. Geophys. Res. Lett., 36, L07706.

Twomey, S. (1977). The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 1149-1952.

Tychkov, I.I., Sviderskaya, I.V., Babushkina, E.A., Popkova, M.I., Vaganov, E.A. & Shishov, V.V. (2019). How can the parameterization of a process-based model help us understand real tree-ring growth? Trees, 33, 345-357.

Vaganov, E.A., Shiyatov, S.G. & Mazepa, V.S. (1996). Dendroclimatic Investigation in Ural-Siberian Subarctic. Nauka, Novosibirsk.

Vaganov, E.A., Hughes, M.K., Kirdyanov, A.V., Schweingruber, F.H. & Silkin, P.P. (1999). Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature, 400, 149-151.

Vaganov, E.A., Hughes, M.K. & Shashkin, A.V. (2006). Growth Dynamics of Conifer Tree Rings: Images of Past and Future Environments. Springer, Berlin, Heidelberg.

Vaganov, E.A., Anchukaitis, K.J. & Evans, M.N. (2011). How well understood are the processes that create dendroclimatic records? A mechanistic model of the climatic control on conifer tree-ring growth dynamics. In: Dendroclimatology (eds Hughes, M.K., Swetnam, T.W. & Diaz, H. F.). Springer, Amsterdam, pp. 37-75. 10.1007/978-1-4020-5725-0_3.

Wang, K. & Dickinson, R.E. (2013). Contribution of solar radiation to decadal temperature variability over land. Proc. Natl Acad. Sci. USA, 110, 14877-14882.

Wieser, G., Hecke, K., Tausz, M. & Matyssek, R. (2013). Foliage type specific susceptibility to ozone in Picea abies, Pinus cembra and Larix decidua at treeline: A synthesis. Environ. Exp. Bot., 90, 4-11.

Wild, M., Ohmura, A. & Makowski, K. (2007). Impact of global dimming and brightening on global warming. Geophys. Res. Lett., 34, L04702.

Wild, M. (2009). Global dimming and brightening: A review. J. Geophys. Res. Atmos., 114, D00D162009.

Wild, M. (2016). Decadal changes in radiative fluxes at land and ocean surfaces and their relevance for global warming WIREs Clim. Change, 7, 91-107.

Wild, M., Ohmura, A., Schär, C., Müller, G., Folini, D., Schwarz, M. et al. (2017). The Global Energy Balance Archive (GEBA) version 2017: a database for worldwide measured surface energy fluxes. Earth Syst. Sci. Data, 9, 601-613.

Wilmking, M., D’Arrigo, R., Jacoby, G. & Juday, G. (2005). Divergent growth responses in circumpolar boreal forests. Geophys. Res. Lett., 32, L15715.

Zhao, C. & Garrett, T.J. (2015). Effects of Arctic haze on surface cloud radiative forcing. Geophys. Res. Let., 42, 557-564.

Zhulidov, A.V., Robarts, R.D., Pavlov, D.F., Kämäri, J., Gurtovaya, T.Y., Meriläinen, J.J. et al. (2011). Long-term changes of heavy metal and sulphur concentrations in ecosystems of the Taymyr Peninsula (Russian Federation) north of the Norilsk industrial complex. Environ. Monit. Assess., 181, 539-553.

Zubareva, O.N., Skripal’shchikova, L.N., Greshilova, N.V. & Kharuk, V.I.(2003). Zoning of landscapes exposed to technogenic emissions from the Norilsk mining and smelting works. Russ. J. Ecol., 34, 375-380.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The influence of decision-making in tree ring-based climate reconstructions

. 2021 Jun 07 ; 12 (1) : 3411. [epub] 20210607

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...