Fur microbiome as a putative source of symbiotic bacteria in sucking lice
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA20-07674S
Grantová Agentura České Republiky
PubMed
39333204
PubMed Central
PMC11436785
DOI
10.1038/s41598-024-73026-2
PII: 10.1038/s41598-024-73026-2
Knihovny.cz E-zdroje
- Klíčová slova
- Anoplura, Fur microbiome, Metagenomics, Rodents, Sucking lice, Symbiosis,
- MeSH
- Bacteria genetika klasifikace izolace a purifikace MeSH
- fylogeneze MeSH
- mikrobiota * MeSH
- Phthiraptera mikrobiologie MeSH
- RNA ribozomální 16S genetika MeSH
- symbióza * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
Symbiosis between insects and bacteria has been established countless times. While it is well known that the symbionts originated from a variety of different bacterial taxa, it is usually difficult to determine their environmental source and a route of their acquisition by the host. In this study, we address this question using a model of Neisseriaceae symbionts in rodent lice. These bacteria established their symbiosis independently with different louse taxa (Polyplax, Hoplopleura, Neohaematopinus), most likely from the same environmental source. We first applied amplicon analysis to screen for candidate source bacterium in the louse environment. Since lice are permanent ectoparasites, often specific to the particular host, we screened various microbiomes associated with three rodent species (Microtus arvalis, Clethrionomys glareolus, and Apodemus flavicollis). The analyzed samples included fur, skin, spleen, and other ectoparasites sampled from these rodents. The fur microbiome data revealed a Neisseriaceae bacterium, closely related to the known louse symbionts. The draft genomes of the environmental Neisseriaceae, assembled from all three rodent hosts, converged to a remarkably small size of approximately 1.4 Mbp, being even smaller than the genomes of the related symbionts. Our results suggest that the rodent fur microbiome can serve as a source for independent establishment of bacterial symbiosis in associated louse species. We further propose a hypothetical scenario of the genome evolution during the transition of a free-living bacterium to the member of the rodent fur-associated microbiome and subsequently to the facultative and obligate louse symbionts.
Zobrazit více v PubMed
McCutcheon, J. P., Boyd, B. M. & Dale, C. The life of an insect endosymbiont from the cradle to the grave. Curr. Biol.29, R485–R495. 10.1016/j.cub.2019.03.032 (2019). PubMed
Husník, F., Chrudimský, T. & Hypša, V. Multiple origins of endosymbiosis within the Enterobacteriaceae (γ-Proteobacteria): convergence of complex phylogenetic approaches. BMC Biol.9, 87. 10.1186/1741-7007-9-87 (2011). PubMed PMC
Gerhart, J. G., Moses, A. S. & Raghavan, R. A Francisella-like endosymbiont in the Gulf Coast tick evolved from a mammalian pathogen. Sci. Rep.6 (1), 33670. 10.1038/srep33670 (2016). PubMed PMC
Chari, A. et al. Phenotypic characterization of Sodalis praecaptivus sp. nov., a close non-insect-associated member of the Sodalis-allied lineage of insect endosymbionts. Int. J. Syst. Evol. Microbiol.65, 1400–1405. 10.1099/ijs.0.000113 (2015). PubMed PMC
Husník, F. Host–symbiont–pathogen interactions in blood-feeding parasites: Nutrition, immune cross-talk and gene exchange. Parasitology. 145, 1294–1303. 10.1017/S0031182018001104 (2018). PubMed
Nishide, Y. et al. Endosymbiotic bacteria of the boar louse Haematopinus apri (Insecta: Phthiraptera: Anoplura). Front. Microbiol.13, 962252. 10.3389/fmicb.2022.962252 (2022). PubMed PMC
Říhová, J., Bell, K. C., Nováková, E. & Hypša, V. Lightella neohaematoaini: A new lineage of highly reduced endosymbionts coevolving with chipmunk lice of the genus Neohaematopinus. Front. Microbiol.13, 900312. 10.3389/fmicb.2022.900312 (2022). PubMed PMC
Říhová, J. et al. A new symbiotic lineage related to Neisseria and Snodgrassella arises from the dynamic and diverse microbiomes in sucking lice. Mol. Ecol.30, 2178–2196. 10.1111/mec.15877 (2021). PubMed
Moran, N. A., McCutcheon, J. P. & Nakabachi, A. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet.42, 165–190. 10.1146/annurev.genet.41.110306.130119 (2008). PubMed
Singleton, C. M. et al. Connecting structure to function with the recovery of over 1000 high quality metagenome-assembled genomes from activated sludge using long-read sequencing. Nat. Commun. 12, ; (2009). 10.1038/s41467-021-22323-6 (2021). PubMed PMC
Myers, G. S. et al. Genome sequence and identification of candidate vaccine antigens from the animal pathogen Dichelobacter nodosus. Nat. Biotechnol.25, 569–575. 10.1038/nbt1292 (2007). PubMed
Siozios, S. et al. Genome dynamics across the evolutionary transition to endosymbiosis. bioRxiv. 10.1101/2023.05.10.540192 (2023).
Bi, H., Zhu, L., Jia, J. & Cronan, J. E. A biotin biosynthesis gene restricted to Helicobacter. Sci. Rep.6, 21162. 10.1038/srep21162 (2016). PubMed PMC
Hang, X., Zeng, Q., Zeng, L., Jia, J. & Bi, H. Functional replacement of the BioC and BioH proteins of Escherichia coli biotin precursor biosynthesis by Ehrlichia chaffeensis novel proteins. Curr. Microbiol.76, 626–636. 10.1007/s00284-019-01679-x (2019). PubMed
Mol. Biol. Evol. 34, 1743–1757; 10.1093/molbev/msx117 (2017).
Martin Říhová, J., Gupta, S., Darby, A. C., Nováková, E. & Hypša, V. Arsenophonus symbiosis with louse fmultipleltiple origins, coevolutionary dynamics, and metabolic significance. mSystems. 8, e00706–e00723. 10.1128/msystems.00706-23 (2023). PubMed PMC
Říhová, J., Nováková, E., Husník, F. & Hypša, V. Legionella becoming a mutuaadaptiveaptive processes shaping the genome of symbiont in the louse Polyplax serrata. Genome Biol. Evol.9, 2946–2957. 10.1093/gbe/evx219 (2017). PubMed PMC
Vibrio fischeri. Microbiology 169, 001302; 10.1099/mic.0.001302 (2023). Suria, A. M., Smith, S., Speare, L., Chen, Y., Chien, I., Clark, E. G., … Septer,A. N. Prevalence and diversity of type VI secretion systems in a model beneficial symbiosis. Front. Microbiol. 13, 988044; 10.3389/fmicb.2022.988044 (2022). PubMed PMC
Front. Microbiol. 13, 988044; 10.3389/fmicb.2022.988044 (2022).
Takeshita, K. & Kikuchi, Y. Genomic comparison of insect gut symbionts from divergent Burkholderia subclades. Genes. 11, 744. 10.3390/genes11070744 (2020). PubMed PMC
Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol.18, 1403–1414. 10.1111/1462-2920.13023 (2016). PubMed
mSystems 1, 10-1128; 10.1128/mSystems.00009–15 (2016).
Andrews, S. & FastQC A quality control tool for high throughput sequence data. (2010). http://www.bioinformatics.babraham.ac.uk/projects/fastqc
Edgar, R. C. & UPARSE Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods. 10, 996–998. 10.1038/nmeth.2604 (2013). PubMed
Triatominae). Microbiome 8, 1–16; 10.1186/s40168-020-00863-4 (2020).
Rodríguez-Ruano, S. M., Juhaňáková, E., Vávra, J. & Nováková, E. Methodological insight into mosquito microbiome studies. Front. Cell. Infect. Microbiol.10, 86. 10.3389/fcimb.2020.00086 (2020). PubMed PMC
Camacho, C. BLAST plus: architecture and applications. BMC Bioinform.10, 421. 10.1186/1471-2105-10-421 (2009). PubMed PMC
Nucleic Acids Res. 41, D590-D596; 10.1093/nar/gks1219 (2012).
Nat. Methods 7, 335–336; 10.1038/nmeth.f.303 (2010).
Morgulis, A. et al. Database indexing for production MegaBLAST searches. Bioinformatics. 24, 1757–1764. 10.1093/bioinformatics/btn322 (2008). PubMed PMC
Jones, R. T., McCormick, K. F. & Martin, A. P. Bacterial communities of Bartonella-positive fleas: diversity and community assembly patterns. Appl. Environ. Microbiol.74, 1667–1670. 10.1128/AEM.01310-07 (2008). PubMed PMC
Katoh, K., Misawa, K., Kuma, K. I. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res.30, 3059–3066. 10.1093/nar/gkf436 (2002). PubMed PMC
Bioinformatics 28, 1647–1649; 10.1093/bioinformatics/bts199 (2012).
Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol.37, 1530–1534. 10.1093/molbev/msaa015 (2020). PubMed PMC
J. Comput. Biol. 19, 455–477; 10.1089/cmb.2012.0021 (2012).
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol.215, 403–410. 10.1016/S0022-2836(05)80360-2 (1990). PubMed
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol.59, 307–321. 10.1093/sysbio/syq010 (2010). PubMed
Seemann, T. PROKKA: Rapid prokaryotic genome annotation. Bioinformatics. 30, 2068–2069. 10.1093/bioinformatics/btu153 (2014). PubMed
Arndt, D. et al. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res.44, W16–W21. 10.1093/nar/gkw387 (2016). PubMed PMC
Syberg-Olsen, M. J., Garber, A. I., Keeling, P. J., McCutcheon, J. P. & Husnik, F. Pseudofinder: detection of pseudogenes in prokaryotic genomes. Mol. Biol. Evol.39, msac213. 10.1093/molbev/msac213 (2022). PubMed PMC
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 31, 3210–3212. 10.1093/bioinformatics/btv351 (2015). PubMed
Yoon, S. H., Ha, S. M., Lim, J., Kwon, S. & Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek. 110, 1281–1286. 10.1007/s10482-017-0844-4 (2017). PubMed
Emms, D. M., Kelly, S. & OrthoFinder Phylogenetic orthology inference for comparative genomics. Genome Biol.20, 1–14. 10.1186/s13059-019-1832-y (2019). PubMed PMC
Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol.428, 726–731. 10.1016/j.jmb.2015.11.006 (2016). PubMed
Talavera, G. & Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol.56, 564–577. 10.1080/10635150701472164 (2007). PubMed
Lartillot, N., Rodrigue, N., Stubbs, D., Richer, J. & PhyloBayes, M. P. I. Phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol.62, 611–615. 10.1093/sysbio/syt022 (2013). PubMed