Complex Alterations of Fatty Acid Metabolism and Phospholipidome Uncovered in Isolated Colon Cancer Epithelial Cells

. 2021 Jun 22 ; 22 (13) : . [epub] 20210622

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34206240

Grantová podpora
15-30585A Ministerstvo Zdravotnictví Ceské Republiky
RVO: 68081707 Akademie Věd České Republiky
DRO-FNOL00098892 Ministerstvo Zdravotnictví Ceské Republiky
RO0520 Ministerstvo Zemědělství
CZ.02.1.01/0.0/0.0/15_003/0000495 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_019/0000868 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_013/0001674 Ministerstvo Školství, Mládeže a Tělovýchovy

The development of colon cancer, one of the most common malignancies, is accompanied with numerous lipid alterations. However, analyses of whole tumor samples may not always provide an accurate description of specific changes occurring directly in tumor epithelial cells. Here, we analyzed in detail the phospholipid (PL), lysophospholipid (lysoPL), and fatty acid (FA) profiles of purified EpCAM+ cells, isolated from tumor and adjacent non-tumor tissues of colon cancer patients. We found that a number of FAs increased significantly in isolated tumor cells, which also included a number of long polyunsaturated FAs. Higher levels of FAs were associated with increased expression of FA synthesis genes, as well as with altered expression of enzymes involved in FA elongation and desaturation, including particularly fatty acid synthase, stearoyl-CoA desaturase, fatty acid desaturase 2 and ELOVL5 fatty acid elongase 5 We identified significant changes in ratios of specific lysoPLs and corresponding PLs. A number of lysophosphatidylcholine and lysophosphatidylethanolamine species, containing long-chain and very-long chain FAs, often with high numbers of double bonds, were significantly upregulated in tumor cells. Increased de novo synthesis of very long-chain FAs, or, altered uptake or incorporation of these FAs into specific lysoPLs in tumor cells, may thus contribute to reprogramming of cellular phospholipidome and membrane alterations observed in colon cancer.

Zobrazit více v PubMed

GBD 2017 Colorectal Cancer Collaborators The global, regional, and national burden of colorectal cancer and its attributable risk factors in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2019;4:913–933. doi: 10.1016/S2468-1253(19)30345-0. PubMed DOI PMC

Vander Heiden M.G. Targeting cancer metabolism: A therapeutic window opens. Nat. Rev. Drug Discov. 2011;10:671–684. doi: 10.1038/nrd3504. PubMed DOI

Peck B., Schulze A. Lipid metabolism at the nexus of diet and tumor microenvironment. Trends Cancer. 2019;5:693–703. doi: 10.1016/j.trecan.2019.09.007. PubMed DOI

Skotland T., Kavaliauskiene S., Sandvig K. The role of lipid species in membranes and cancer-related changes. Cancer Metastasis Rev. 2020;39:343–360. doi: 10.1007/s10555-020-09872-z. PubMed DOI PMC

Harayama T., Riezman H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 2018;19:281–296. doi: 10.1038/nrm.2017.138. PubMed DOI

Machala M., Procházková J., Hofmanová J., Králíková L., Slavík J., Tylichová Z., Ovesná P., Kozubík A., Vondráček J. Colon cancer and perturbations of the sphingolipid metabolism. Int. J. Mol. Sci. 2019;20:6051. doi: 10.3390/ijms20236051. PubMed DOI PMC

Armitage E.G., Southam A.D. Monitoring cancer prognosis, diagnosis and treatment efficacy using metabolomics and lipidomics. Metabolomics. 2016;12:146. doi: 10.1007/s11306-016-1093-7. PubMed DOI PMC

Stephenson D.J., Hoeferlin L.A., Chalfant C.E. Lipidomics in translational research and the clinical significance of lipid-based biomarkers. Transl. Res. 2017;189:13–29. doi: 10.1016/j.trsl.2017.06.006. PubMed DOI PMC

Wenk M.R. Lipidomics: New tools and applications. Cell. 2010;143:888–895. doi: 10.1016/j.cell.2010.11.033. PubMed DOI

Yang K., Han X. Lipidomics: Techniques, Applications, and Outcomes Related to Biomedical Sciences. Trends Biochem. Sci. 2016;41:954–969. doi: 10.1016/j.tibs.2016.08.010. PubMed DOI PMC

Bandu R., Mok H.J., Kim K.P. Phospholipids as cancer biomarkers: Mass spectrometry-based analysis. Mass Spectrom. Rev. 2018;37:107–138. doi: 10.1002/mas.21510. PubMed DOI

Pakiet A., Kobiela J., Stepnowski P., Sledzinski T., Mika A. Changes in lipids composition and metabolism in colorectal cancer: A review. Lipids Health Dis. 2019;18:29. doi: 10.1186/s12944-019-0977-8. PubMed DOI PMC

Röhrig F., Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nat. Rev. Cancer. 2016;16:732–749. doi: 10.1038/nrc.2016.89. PubMed DOI

Chen M., Huang J. The expanded role of fatty acid metabolism in cancer: New aspects and targets. Precis. Clin. Med. 2019;2:183–191. doi: 10.1093/pcmedi/pbz017. PubMed DOI PMC

Zaidi N., Swinnen J.V., Smans K. ATP-citrate lyase: A key player in cancer metabolism. Cancer Res. 2012;72:3709–3714. doi: 10.1158/0008-5472.CAN-11-4112. PubMed DOI

Ntambi J.M., Miyazaki M., Dobrzyn A. Regulation of stearoyl-CoA desaturase expression. Lipids. 2004;39:1061–1065. doi: 10.1007/s11745-004-1331-2. PubMed DOI

Igal R.A. Stearoyl CoA desaturase-1: New insights into a central regulator of cancer metabolism. Biochim. Biophys. Acta. 2016;1861:1865–1880. doi: 10.1016/j.bbalip.2016.09.009. PubMed DOI

Li J., Condello S., Thomes-Pepin J., Ma X., Xia Y., Hurley T.D., Matei D., Cheng J.X. Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells. Cell Stem Cell. 2017;20:303–314.e5. doi: 10.1016/j.stem.2016.11.004. PubMed DOI PMC

Roongta U.V., Pabalan J.G., Wang X., Ryseck R.P., Fargnoli J., Henley B.J., Yang W.P., Zhu J., Madireddi M.T., Lawrence R.M. Cancer cell dependence on unsaturated fatty acids implicates stearoyl-CoA desaturase as a target for cancer therapy. Mol. Cancer Res. 2011;9:1551–1561. doi: 10.1158/1541-7786.MCR-11-0126. PubMed DOI

Wen Y.A., Xiong X., Zaytseva Y.Y., Napier D.L., Vallee E., Li A.T., Wang C., Weiss H.L., Evers B.M., Gao T. Downregulation of SREBP inhibits tumor growth and initiation by altering cellular metabolism in colon cancer. Cell Death Dis. 2018;9:265. doi: 10.1038/s41419-018-0330-6. PubMed DOI PMC

Kuemmerle N.B., Rysman E., Lombardo P.S., Flanagan A.J., Lipe B.C., Wells W.A., Pettus J.R., Froehlich H.M., Memoli V.A., Morganelli P.M. Lipoprotein lipase links dietary fat to solid tumor cell proliferation. Mol. Cancer Ther. 2011;10:427–436. doi: 10.1158/1535-7163.MCT-10-0802. PubMed DOI PMC

Notarnicola M., Messa C., Caruso M.G. A significant role of lipogenic enzymes in colorectal cancer. Anticancer Res. 2012;32:2585–2590. PubMed

Mutoh M., Niho N., Wakabayashi K. Concomitant suppression of hyperlipidemia and intestinal polyp formation by increasing lipoprotein lipase activity in Apc-deficient mice. Biol. Chem. 2006;387:381–385. doi: 10.1515/BC.2006.051. PubMed DOI

Abbassi-Ghadi N., Antonowicz S.S., McKenzie J.S., Kumar S., Huang J., Jones E.A., Strittmatter N., Petts G., Kudo H., Court S. De novo lipogenesis alters the phospholipidome of esophageal adenocarcinoma. Cancer Res. 2020;80:2764–2774. doi: 10.1158/0008-5472.CAN-19-4035. PubMed DOI

Azordegan N., Fraser V., Le K., Hillyer L.M., Ma D.W., Fischer G., Moghadasian M.H. Carcinogenesis alters fatty acid profile in breast tissue. Mol. Cell. Biochem. 2013;374:223–232. doi: 10.1007/s11010-012-1523-4. PubMed DOI

Escriba P.V., Gonzalez-Ros J.M., Goni F.M., Kinnunen P.K., Vigh L., Sanchez-Magraner L., Fernandez A.M., Busquets X., Horvath I., Barcelo-Coblijn G. Membranes: A meeting point for lipids, proteins and therapies. J. Cell. Mol. Med. 2008;12:829–875. doi: 10.1111/j.1582-4934.2008.00281.x. PubMed DOI PMC

Kurabe N., Hayasaka T., Ogawa M., Masaki N., Ide Y., Waki M., Nakamura T., Kurachi K., Kahyo T., Shinmura K. Accumulated phosphatidylcholine (16:0/16:1) in human colorectal cancer; possible involvement of LPCAT4. Cancer Sci. 2013;104:1295–1302. doi: 10.1111/cas.12221. PubMed DOI PMC

Marien E., Meister M., Muley T., Fieuws S., Bordel S., Derua R., Spraggins J., Van de Plas R., Dehairs J., Wouters J. Non-small cell lung cancer is characterized by dramatic changes in phospholipid profiles. Int. J. Cancer. 2015;137:1539–1548. doi: 10.1002/ijc.29517. PubMed DOI PMC

Kitamura C., Sonoda H., Nozawa H., Kano K., Emoto S., Murono K., Kaneko M., Hiyoshi M., Sasaki K., Nishikawa T. The component changes of lysophospholipid mediators in colorectal cancer. Tumour Biol. 2019;41:1010428319848616. doi: 10.1177/1010428319848616. PubMed DOI

Mirnezami R., Spagou K., Vorkas P.A., Lewis M.R., Kinross J., Want E., Shion H., Goldin R.D., Darzi A., Takats Z. Chemical mapping of the colorectal cancer microenvironment via MALDI imaging mass spectrometry (MALDI-MSI) reveals novel cancer-associated field effects. Mol. Oncol. 2014;8:39–49. doi: 10.1016/j.molonc.2013.08.010. PubMed DOI PMC

Ecker J., Benedetti E., Kindt A.S.D., Horing M., Perl M., Machmuller A.C., Sichler A., Plagge J., Wang Y., Zeissig S. The colorectal cancer lipidome—Identification of a robust tumor-specific lipid species signature. Gastroenterology. 2021 doi: 10.1053/j.gastro.2021.05.009. PubMed DOI

Procházková J., Slavík J., Bouchal J., Levková M., Hušková Z., Ehrmann J., Ovesná P., Kolář Z., Skalický P., Straková N. Specific alterations of sphingolipid metabolism identified in EpCAM-positive cells isolated from human colon tumors. Biochim. Biophys. Acta. 2020;1865:158742. doi: 10.1016/j.bbalip.2020.158742. PubMed DOI

Ueda S.M., Yap K.L., Davidson B., Tian Y., Murthy V., Wang T.L., Visvanathan K., Kuhajda F.P., Bristow R.E., Zhang H. Expression of fatty acid synthase depends on NAC1 and is associated with recurrent ovarian serous carcinomas. J. Oncol. 2010;2010:285191. doi: 10.1155/2010/285191. PubMed DOI PMC

Cruz A.L.S., Carrossini N., Teixeira L.K., Ribeiro-Pinto L.F., Bozza P.T., Viola J.P.B. Cell cycle progression regulates biogenesis and cellular localization of lipid droplets. Mol. Cell. Biol. 2019;39:e00374-18. doi: 10.1128/MCB.00374-18. PubMed DOI PMC

Vuik F.E., Nieuwenburg S.A., Bardou M., Lansdorp-Vogelaar I., Dinis-Ribeiro M., Bento M.J., Zadnik V., Pellise M., Esteban L., Kaminski M.F. Increasing incidence of colorectal cancer in young adults in Europe over the last 25 years. Gut. 2019;68:1820–1826. doi: 10.1136/gutjnl-2018-317592. PubMed DOI PMC

Zaytseva Y. Lipid metabolism as a targetable metabolic vulnerability in colorectal cancer. Cancers. 2021;13:301. doi: 10.3390/cancers13020301. PubMed DOI PMC

Hofmanová J., Slavík J., Ovesná P., Tylichová Z., Dušek L., Straková N., Vaculová A.H., Ciganek M., Kala Z., Jíra M. Phospholipid profiling enables to discriminate tumor- and non-tumor-derived human colon epithelial cells: Phospholipidome similarities and differences in colon cancer cell lines and in patient-derived cell samples. PLoS ONE. 2020;15:e0228010. doi: 10.1371/journal.pone.0228010. PubMed DOI PMC

Menendez J.A., Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer. 2007;7:763–777. doi: 10.1038/nrc2222. PubMed DOI

Zhou Y., Bollu L.R., Tozzi F., Ye X., Bhattacharya R., Gao G., Dupre E., Xia L., Lu J., Fan F. ATP citrate lyase mediates resistance of colorectal cancer cells to SN38. Mol. Cancer Ther. 2013;12:2782–2791. doi: 10.1158/1535-7163.MCT-13-0098. PubMed DOI PMC

Wang C., Xu C., Sun M., Luo D., Liao D.F., Cao D. Acetyl-CoA carboxylase-alpha inhibitor TOFA induces human cancer cell apoptosis. Biochem. Biophys. Res. Commun. 2009;385:302–306. doi: 10.1016/j.bbrc.2009.05.045. PubMed DOI PMC

Zaytseva Y.Y., Rychahou P.G., Gulhati P., Elliott V.A., Mustain W.C., O’Connor K., Morris A.J., Sunkara M., Weiss H.L., Lee E.Y. Inhibition of fatty acid synthase attenuates CD44-associated signaling and reduces metastasis in colorectal cancer. Cancer Res. 2012;72:1504–1517. doi: 10.1158/0008-5472.CAN-11-4057. PubMed DOI PMC

Ricoult S.J., Yecies J.L., Ben-Sahra I., Manning B.D. Oncogenic PI3K and K-Ras stimulate de novo lipid synthesis through mTORC1 and SREBP. Oncogene. 2016;35:1250–1260. doi: 10.1038/onc.2015.179. PubMed DOI PMC

Singh K.B., Hahm E.R., Kim S.H., Wendell S.G., Singh S.V. A novel metabolic function of Myc in regulation of fatty acid synthesis in prostate cancer. Oncogene. 2021;40:592–602. doi: 10.1038/s41388-020-01553-z. PubMed DOI PMC

Cruz-Gil S., Sanchez-Martinez R., Gomez de Cedron M., Martin-Hernandez R., Vargas T., Molina S., Herranz J., Davalos A., Reglero G., Ramirez de Molina A. Targeting the lipid metabolic axis ACSL/SCD in colorectal cancer progression by therapeutic miRNAs: miR-19b-1 role. J. Lipid Res. 2018;59:14–24. doi: 10.1194/jlr.M076752. PubMed DOI PMC

Imamura K., Tomita N., Kawakita Y., Ito Y., Ono K., Nii N., Miyazaki T., Yonemori K., Tawada M., Sumi H. Discovery of novel and potent stearoylcoenzyme A desaturase 1 (SCD1) inhibitors as anticancer agents. Bioorg. Med. Chem. 2017;25:3768–3779. doi: 10.1016/j.bmc.2017.05.016. PubMed DOI

Koeberle A., Loser K., Thurmer M. Stearoyl-CoA desaturase-1 and adaptive stress signaling. Biochim. Biophys. Acta. 2016;1861:1719–1726. doi: 10.1016/j.bbalip.2016.08.009. PubMed DOI

Tian J., Lou J., Cai Y., Rao M., Lu Z., Zhu Y., Zou D., Peng X., Wang H., Zhang M. Risk SNP-Mediated Enhancer-Promoter Interaction Drives Colorectal Cancer through Both FADS2 and AP002754.2. Cancer Res. 2020;80:1804–1818. doi: 10.1158/0008-5472.CAN-19-2389. PubMed DOI

Triki M., Rinaldi G., Planque M., Broekaert D., Winkelkotte A.M., Maier C.R., Janaki Raman S., Vandekeere A., Van Elsen J., Orth M.F. mTOR Signaling and SREBP activity increase FADS2 expression and can activate sapienate biosynthesis. Cell Rep. 2020;31:107806. doi: 10.1016/j.celrep.2020.107806. PubMed DOI PMC

Young R.S.E., Bowman A.P., Williams E.D., Tousignant K.D., Bidgood C.L., Narreddula V.R., Gupta R., Marshall D.L., Poad B.L.J., Nelson C.C. Apocryphal FADS2 activity promotes fatty acid diversification in cancer. Cell Rep. 2021;34:108738. doi: 10.1016/j.celrep.2021.108738. PubMed DOI

Mika A., Kobiela J., Czumaj A., Chmielewski M., Stepnowski P., Sledzinski T. Hyper-elongation in colorectal cancer tissue—Cerotic acid is a potential novel serum metabolic marker of colorectal malignancies. Cell. Physiol. Biochem. 2017;41:722–730. doi: 10.1159/000458431. PubMed DOI

Mika A., Kobiela J., Pakiet A., Czumaj A., Sokolowska E., Makarewicz W., Chmielewski M., Stepnowski P., Marino-Gammazza A., Sledzinski T. Preferential uptake of polyunsaturated fatty acids by colorectal cancer cells. Sci. Rep. 2020;10:1954. doi: 10.1038/s41598-020-58895-7. PubMed DOI PMC

Centenera M.M., Scott J.S., Machiels J., Nassar Z.D., Miller D.C., Zininos I., Dehairs J., Burvenich I.J.G., Zadra G., Chetta P. ELOVL5 is a critical and targetable fatty acid elongase in prostate cancer. Cancer Res. 2021;81:1704–1718. doi: 10.1158/0008-5472.CAN-20-2511. PubMed DOI

Feng Y.H., Chen W.Y., Kuo Y.H., Tung C.L., Tsao C.J., Shiau A.L., Wu C.L. Elovl6 is a poor prognostic predictor in breast cancer. Oncol. Lett. 2016;12:207–212. doi: 10.3892/ol.2016.4587. PubMed DOI PMC

Li H., Wang X., Tang J., Zhao H., Duan M. Decreased expression levels of ELOVL6 indicate poor prognosis in hepatocellular carcinoma. Oncol. Lett. 2019;18:6214–6220. doi: 10.3892/ol.2019.10974. PubMed DOI PMC

Su Y.C., Feng Y.H., Wu H.T., Huang Y.S., Tung C.L., Wu P., Chang C.J., Shiau A.L., Wu C.L. Elovl6 is a negative clinical predictor for liver cancer and knockdown of Elovl6 reduces murine liver cancer progression. Sci. Rep. 2018;8:6586. doi: 10.1038/s41598-018-24633-3. PubMed DOI PMC

Moon Y.A., Ochoa C.R., Mitsche M.A., Hammer R.E., Horton J.D. Deletion of ELOVL6 blocks the synthesis of oleic acid but does not prevent the development of fatty liver or insulin resistance. J. Lipid Res. 2014;55:2597–2605. doi: 10.1194/jlr.M054353. PubMed DOI PMC

Moon Y.A., Shah N.A., Mohapatra S., Warrington J.A., Horton J.D. Identification of a mammalian long chain fatty acyl elongase regulated by sterol regulatory element-binding proteins. J. Biol. Chem. 2001;276:45358–45366. doi: 10.1074/jbc.M108413200. PubMed DOI

Makide K., Kitamura H., Sato Y., Okutani M., Aoki J. Emerging lysophospholipid mediators, lysophosphatidylserine, lysophosphatidylthreonine, lysophosphatidylethanolamine and lysophosphatidylglycerol. Prostaglandins Other Lipid Mediat. 2009;89:135–139. doi: 10.1016/j.prostaglandins.2009.04.009. PubMed DOI

Koeberle A., Shindou H., Harayama T., Shimizu T. Palmitoleate is a mitogen, formed upon stimulation with growth factors, and converted to palmitoleoyl-phosphatidylinositol. J. Biol. Chem. 2012;287:27244–27254. doi: 10.1074/jbc.M111.274829. PubMed DOI PMC

Tylichová Z., Slavík J., Ciganek M., Ovesná P., Krčmář P., Straková N., Machala M., Kozubík A., Hofmanová J., Vondráček J. Butyrate and docosahexaenoic acid interact in alterations of specific lipid classes in differentiating colon cancer cells. J. Cell. Biochem. 2018;119:4664–4679. doi: 10.1002/jcb.26641. PubMed DOI

Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959;37:911–917. doi: 10.1139/o59-099. PubMed DOI

Kang J.X., Wang J. A simplified method for analysis of polyunsaturated fatty acids. BMC Biochem. 2005;6:5. doi: 10.1186/1471-2091-6-5. PubMed DOI PMC

Cottet V., Vaysse C., Scherrer M.L., Ortega-Deballon P., Lakkis Z., Delhorme J.B., Deguelte-Lardiere S., Combe N., Bonithon-Kopp C. Fatty acid composition of adipose tissue and colorectal cancer: A case-control study. Am. J. Clin. Nutr. 2015;101:192–201. doi: 10.3945/ajcn.114.088948. PubMed DOI

Svendsen K., Olsen T., Nordstrand Rusvik T.C., Ulven S.M., Holven K.B., Retterstol K., Telle-Hansen V.H. Fatty acid profile and estimated desaturase activities in whole blood are associated with metabolic health. Lipids Health Dis. 2020;19:102. doi: 10.1186/s12944-020-01282-y. PubMed DOI PMC

Hurtado del Pozo C., Calvo R.M., Vesperinas-Garcia G., Gomez-Ambrosi J., Fruhbeck G., Corripio-Sanchez R., Rubio M.A., Obregon M.J. IPO8 and FBXL10: New reference genes for gene expression studies in human adipose tissue. Obesity. 2010;18:897–903. doi: 10.1038/oby.2009.374. PubMed DOI

Krzystek-Korpacka M., Hotowy K., Czapinska E., Podkowik M., Bania J., Gamian A., Bednarz-Misa I. Serum availability affects expression of common house-keeping genes in colon adenocarcinoma cell lines: Implications for quantitative real-time PCR studies. Cytotechnology. 2016;68:2503–2517. doi: 10.1007/s10616-016-9971-4. PubMed DOI PMC

Nguewa P.A., Agorreta J., Blanco D., Lozano M.D., Gomez-Roman J., Sanchez B.A., Valles I., Pajares M.J., Pio R., Rodriguez M.J. Identification of importin 8 (IPO8) as the most accurate reference gene for the clinicopathological analysis of lung specimens. BMC Mol. Biol. 2008;9:103. doi: 10.1186/1471-2199-9-103. PubMed DOI PMC

Sørby L.A., Andersen S.N., Bukholm I.R., Jacobsen M.B. Evaluation of suitable reference genes for normalization of real-time reverse transcription PCR analysis in colon cancer. J. Exp. Clin. Cancer Res. 2010;29:144. doi: 10.1186/1756-9966-29-144. PubMed DOI PMC

Schmittgen T.D., Livak K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008;3:1101–1108. doi: 10.1038/nprot.2008.73. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...