Complex Alterations of Fatty Acid Metabolism and Phospholipidome Uncovered in Isolated Colon Cancer Epithelial Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
15-30585A
Ministerstvo Zdravotnictví Ceské Republiky
RVO: 68081707
Akademie Věd České Republiky
DRO-FNOL00098892
Ministerstvo Zdravotnictví Ceské Republiky
RO0520
Ministerstvo Zemědělství
CZ.02.1.01/0.0/0.0/15_003/0000495
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_019/0000868
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_013/0001674
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34206240
PubMed Central
PMC8268957
DOI
10.3390/ijms22136650
PII: ijms22136650
Knihovny.cz E-zdroje
- Klíčová slova
- EpCAM, colorectal carcinoma, desaturation, epithelial cells, fatty acid synthesis, lipidomics, lysophospholipids, phospholipids,
- MeSH
- adenokarcinom enzymologie genetika metabolismus MeSH
- desaturasy mastných kyselin genetika metabolismus MeSH
- elongasy mastných kyselin genetika metabolismus MeSH
- epitelové buňky enzymologie metabolismus MeSH
- fosfolipidy metabolismus MeSH
- lidé MeSH
- lipidomika MeSH
- lipogeneze MeSH
- mastné kyseliny metabolismus MeSH
- metabolismus lipidů * MeSH
- nádory tračníku enzymologie genetika metabolismus MeSH
- regulace genové exprese u nádorů * MeSH
- senioři MeSH
- stearyl-CoA-desaturasa genetika metabolismus MeSH
- syntázy mastných kyselin genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- desaturasy mastných kyselin MeSH
- elongasy mastných kyselin MeSH
- ELOVL5 protein, human MeSH Prohlížeč
- FADS2 protein, human MeSH Prohlížeč
- fosfolipidy MeSH
- mastné kyseliny MeSH
- stearyl-CoA-desaturasa MeSH
- syntázy mastných kyselin MeSH
The development of colon cancer, one of the most common malignancies, is accompanied with numerous lipid alterations. However, analyses of whole tumor samples may not always provide an accurate description of specific changes occurring directly in tumor epithelial cells. Here, we analyzed in detail the phospholipid (PL), lysophospholipid (lysoPL), and fatty acid (FA) profiles of purified EpCAM+ cells, isolated from tumor and adjacent non-tumor tissues of colon cancer patients. We found that a number of FAs increased significantly in isolated tumor cells, which also included a number of long polyunsaturated FAs. Higher levels of FAs were associated with increased expression of FA synthesis genes, as well as with altered expression of enzymes involved in FA elongation and desaturation, including particularly fatty acid synthase, stearoyl-CoA desaturase, fatty acid desaturase 2 and ELOVL5 fatty acid elongase 5 We identified significant changes in ratios of specific lysoPLs and corresponding PLs. A number of lysophosphatidylcholine and lysophosphatidylethanolamine species, containing long-chain and very-long chain FAs, often with high numbers of double bonds, were significantly upregulated in tumor cells. Increased de novo synthesis of very long-chain FAs, or, altered uptake or incorporation of these FAs into specific lysoPLs in tumor cells, may thus contribute to reprogramming of cellular phospholipidome and membrane alterations observed in colon cancer.
Department of Experimental Biology Faculty of Science Masaryk University 625 00 Brno Czech Republic
Department of Pharmacology and Toxicology Veterinary Research Institute 621 00 Brno Czech Republic
Department of Surgery University Hospital 779 00 Olomouc Czech Republic
Zobrazit více v PubMed
GBD 2017 Colorectal Cancer Collaborators The global, regional, and national burden of colorectal cancer and its attributable risk factors in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2019;4:913–933. doi: 10.1016/S2468-1253(19)30345-0. PubMed DOI PMC
Vander Heiden M.G. Targeting cancer metabolism: A therapeutic window opens. Nat. Rev. Drug Discov. 2011;10:671–684. doi: 10.1038/nrd3504. PubMed DOI
Peck B., Schulze A. Lipid metabolism at the nexus of diet and tumor microenvironment. Trends Cancer. 2019;5:693–703. doi: 10.1016/j.trecan.2019.09.007. PubMed DOI
Skotland T., Kavaliauskiene S., Sandvig K. The role of lipid species in membranes and cancer-related changes. Cancer Metastasis Rev. 2020;39:343–360. doi: 10.1007/s10555-020-09872-z. PubMed DOI PMC
Harayama T., Riezman H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 2018;19:281–296. doi: 10.1038/nrm.2017.138. PubMed DOI
Machala M., Procházková J., Hofmanová J., Králíková L., Slavík J., Tylichová Z., Ovesná P., Kozubík A., Vondráček J. Colon cancer and perturbations of the sphingolipid metabolism. Int. J. Mol. Sci. 2019;20:6051. doi: 10.3390/ijms20236051. PubMed DOI PMC
Armitage E.G., Southam A.D. Monitoring cancer prognosis, diagnosis and treatment efficacy using metabolomics and lipidomics. Metabolomics. 2016;12:146. doi: 10.1007/s11306-016-1093-7. PubMed DOI PMC
Stephenson D.J., Hoeferlin L.A., Chalfant C.E. Lipidomics in translational research and the clinical significance of lipid-based biomarkers. Transl. Res. 2017;189:13–29. doi: 10.1016/j.trsl.2017.06.006. PubMed DOI PMC
Wenk M.R. Lipidomics: New tools and applications. Cell. 2010;143:888–895. doi: 10.1016/j.cell.2010.11.033. PubMed DOI
Yang K., Han X. Lipidomics: Techniques, Applications, and Outcomes Related to Biomedical Sciences. Trends Biochem. Sci. 2016;41:954–969. doi: 10.1016/j.tibs.2016.08.010. PubMed DOI PMC
Bandu R., Mok H.J., Kim K.P. Phospholipids as cancer biomarkers: Mass spectrometry-based analysis. Mass Spectrom. Rev. 2018;37:107–138. doi: 10.1002/mas.21510. PubMed DOI
Pakiet A., Kobiela J., Stepnowski P., Sledzinski T., Mika A. Changes in lipids composition and metabolism in colorectal cancer: A review. Lipids Health Dis. 2019;18:29. doi: 10.1186/s12944-019-0977-8. PubMed DOI PMC
Röhrig F., Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nat. Rev. Cancer. 2016;16:732–749. doi: 10.1038/nrc.2016.89. PubMed DOI
Chen M., Huang J. The expanded role of fatty acid metabolism in cancer: New aspects and targets. Precis. Clin. Med. 2019;2:183–191. doi: 10.1093/pcmedi/pbz017. PubMed DOI PMC
Zaidi N., Swinnen J.V., Smans K. ATP-citrate lyase: A key player in cancer metabolism. Cancer Res. 2012;72:3709–3714. doi: 10.1158/0008-5472.CAN-11-4112. PubMed DOI
Ntambi J.M., Miyazaki M., Dobrzyn A. Regulation of stearoyl-CoA desaturase expression. Lipids. 2004;39:1061–1065. doi: 10.1007/s11745-004-1331-2. PubMed DOI
Igal R.A. Stearoyl CoA desaturase-1: New insights into a central regulator of cancer metabolism. Biochim. Biophys. Acta. 2016;1861:1865–1880. doi: 10.1016/j.bbalip.2016.09.009. PubMed DOI
Li J., Condello S., Thomes-Pepin J., Ma X., Xia Y., Hurley T.D., Matei D., Cheng J.X. Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells. Cell Stem Cell. 2017;20:303–314.e5. doi: 10.1016/j.stem.2016.11.004. PubMed DOI PMC
Roongta U.V., Pabalan J.G., Wang X., Ryseck R.P., Fargnoli J., Henley B.J., Yang W.P., Zhu J., Madireddi M.T., Lawrence R.M. Cancer cell dependence on unsaturated fatty acids implicates stearoyl-CoA desaturase as a target for cancer therapy. Mol. Cancer Res. 2011;9:1551–1561. doi: 10.1158/1541-7786.MCR-11-0126. PubMed DOI
Wen Y.A., Xiong X., Zaytseva Y.Y., Napier D.L., Vallee E., Li A.T., Wang C., Weiss H.L., Evers B.M., Gao T. Downregulation of SREBP inhibits tumor growth and initiation by altering cellular metabolism in colon cancer. Cell Death Dis. 2018;9:265. doi: 10.1038/s41419-018-0330-6. PubMed DOI PMC
Kuemmerle N.B., Rysman E., Lombardo P.S., Flanagan A.J., Lipe B.C., Wells W.A., Pettus J.R., Froehlich H.M., Memoli V.A., Morganelli P.M. Lipoprotein lipase links dietary fat to solid tumor cell proliferation. Mol. Cancer Ther. 2011;10:427–436. doi: 10.1158/1535-7163.MCT-10-0802. PubMed DOI PMC
Notarnicola M., Messa C., Caruso M.G. A significant role of lipogenic enzymes in colorectal cancer. Anticancer Res. 2012;32:2585–2590. PubMed
Mutoh M., Niho N., Wakabayashi K. Concomitant suppression of hyperlipidemia and intestinal polyp formation by increasing lipoprotein lipase activity in Apc-deficient mice. Biol. Chem. 2006;387:381–385. doi: 10.1515/BC.2006.051. PubMed DOI
Abbassi-Ghadi N., Antonowicz S.S., McKenzie J.S., Kumar S., Huang J., Jones E.A., Strittmatter N., Petts G., Kudo H., Court S. De novo lipogenesis alters the phospholipidome of esophageal adenocarcinoma. Cancer Res. 2020;80:2764–2774. doi: 10.1158/0008-5472.CAN-19-4035. PubMed DOI
Azordegan N., Fraser V., Le K., Hillyer L.M., Ma D.W., Fischer G., Moghadasian M.H. Carcinogenesis alters fatty acid profile in breast tissue. Mol. Cell. Biochem. 2013;374:223–232. doi: 10.1007/s11010-012-1523-4. PubMed DOI
Escriba P.V., Gonzalez-Ros J.M., Goni F.M., Kinnunen P.K., Vigh L., Sanchez-Magraner L., Fernandez A.M., Busquets X., Horvath I., Barcelo-Coblijn G. Membranes: A meeting point for lipids, proteins and therapies. J. Cell. Mol. Med. 2008;12:829–875. doi: 10.1111/j.1582-4934.2008.00281.x. PubMed DOI PMC
Kurabe N., Hayasaka T., Ogawa M., Masaki N., Ide Y., Waki M., Nakamura T., Kurachi K., Kahyo T., Shinmura K. Accumulated phosphatidylcholine (16:0/16:1) in human colorectal cancer; possible involvement of LPCAT4. Cancer Sci. 2013;104:1295–1302. doi: 10.1111/cas.12221. PubMed DOI PMC
Marien E., Meister M., Muley T., Fieuws S., Bordel S., Derua R., Spraggins J., Van de Plas R., Dehairs J., Wouters J. Non-small cell lung cancer is characterized by dramatic changes in phospholipid profiles. Int. J. Cancer. 2015;137:1539–1548. doi: 10.1002/ijc.29517. PubMed DOI PMC
Kitamura C., Sonoda H., Nozawa H., Kano K., Emoto S., Murono K., Kaneko M., Hiyoshi M., Sasaki K., Nishikawa T. The component changes of lysophospholipid mediators in colorectal cancer. Tumour Biol. 2019;41:1010428319848616. doi: 10.1177/1010428319848616. PubMed DOI
Mirnezami R., Spagou K., Vorkas P.A., Lewis M.R., Kinross J., Want E., Shion H., Goldin R.D., Darzi A., Takats Z. Chemical mapping of the colorectal cancer microenvironment via MALDI imaging mass spectrometry (MALDI-MSI) reveals novel cancer-associated field effects. Mol. Oncol. 2014;8:39–49. doi: 10.1016/j.molonc.2013.08.010. PubMed DOI PMC
Ecker J., Benedetti E., Kindt A.S.D., Horing M., Perl M., Machmuller A.C., Sichler A., Plagge J., Wang Y., Zeissig S. The colorectal cancer lipidome—Identification of a robust tumor-specific lipid species signature. Gastroenterology. 2021 doi: 10.1053/j.gastro.2021.05.009. PubMed DOI
Procházková J., Slavík J., Bouchal J., Levková M., Hušková Z., Ehrmann J., Ovesná P., Kolář Z., Skalický P., Straková N. Specific alterations of sphingolipid metabolism identified in EpCAM-positive cells isolated from human colon tumors. Biochim. Biophys. Acta. 2020;1865:158742. doi: 10.1016/j.bbalip.2020.158742. PubMed DOI
Ueda S.M., Yap K.L., Davidson B., Tian Y., Murthy V., Wang T.L., Visvanathan K., Kuhajda F.P., Bristow R.E., Zhang H. Expression of fatty acid synthase depends on NAC1 and is associated with recurrent ovarian serous carcinomas. J. Oncol. 2010;2010:285191. doi: 10.1155/2010/285191. PubMed DOI PMC
Cruz A.L.S., Carrossini N., Teixeira L.K., Ribeiro-Pinto L.F., Bozza P.T., Viola J.P.B. Cell cycle progression regulates biogenesis and cellular localization of lipid droplets. Mol. Cell. Biol. 2019;39:e00374-18. doi: 10.1128/MCB.00374-18. PubMed DOI PMC
Vuik F.E., Nieuwenburg S.A., Bardou M., Lansdorp-Vogelaar I., Dinis-Ribeiro M., Bento M.J., Zadnik V., Pellise M., Esteban L., Kaminski M.F. Increasing incidence of colorectal cancer in young adults in Europe over the last 25 years. Gut. 2019;68:1820–1826. doi: 10.1136/gutjnl-2018-317592. PubMed DOI PMC
Zaytseva Y. Lipid metabolism as a targetable metabolic vulnerability in colorectal cancer. Cancers. 2021;13:301. doi: 10.3390/cancers13020301. PubMed DOI PMC
Hofmanová J., Slavík J., Ovesná P., Tylichová Z., Dušek L., Straková N., Vaculová A.H., Ciganek M., Kala Z., Jíra M. Phospholipid profiling enables to discriminate tumor- and non-tumor-derived human colon epithelial cells: Phospholipidome similarities and differences in colon cancer cell lines and in patient-derived cell samples. PLoS ONE. 2020;15:e0228010. doi: 10.1371/journal.pone.0228010. PubMed DOI PMC
Menendez J.A., Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer. 2007;7:763–777. doi: 10.1038/nrc2222. PubMed DOI
Zhou Y., Bollu L.R., Tozzi F., Ye X., Bhattacharya R., Gao G., Dupre E., Xia L., Lu J., Fan F. ATP citrate lyase mediates resistance of colorectal cancer cells to SN38. Mol. Cancer Ther. 2013;12:2782–2791. doi: 10.1158/1535-7163.MCT-13-0098. PubMed DOI PMC
Wang C., Xu C., Sun M., Luo D., Liao D.F., Cao D. Acetyl-CoA carboxylase-alpha inhibitor TOFA induces human cancer cell apoptosis. Biochem. Biophys. Res. Commun. 2009;385:302–306. doi: 10.1016/j.bbrc.2009.05.045. PubMed DOI PMC
Zaytseva Y.Y., Rychahou P.G., Gulhati P., Elliott V.A., Mustain W.C., O’Connor K., Morris A.J., Sunkara M., Weiss H.L., Lee E.Y. Inhibition of fatty acid synthase attenuates CD44-associated signaling and reduces metastasis in colorectal cancer. Cancer Res. 2012;72:1504–1517. doi: 10.1158/0008-5472.CAN-11-4057. PubMed DOI PMC
Ricoult S.J., Yecies J.L., Ben-Sahra I., Manning B.D. Oncogenic PI3K and K-Ras stimulate de novo lipid synthesis through mTORC1 and SREBP. Oncogene. 2016;35:1250–1260. doi: 10.1038/onc.2015.179. PubMed DOI PMC
Singh K.B., Hahm E.R., Kim S.H., Wendell S.G., Singh S.V. A novel metabolic function of Myc in regulation of fatty acid synthesis in prostate cancer. Oncogene. 2021;40:592–602. doi: 10.1038/s41388-020-01553-z. PubMed DOI PMC
Cruz-Gil S., Sanchez-Martinez R., Gomez de Cedron M., Martin-Hernandez R., Vargas T., Molina S., Herranz J., Davalos A., Reglero G., Ramirez de Molina A. Targeting the lipid metabolic axis ACSL/SCD in colorectal cancer progression by therapeutic miRNAs: miR-19b-1 role. J. Lipid Res. 2018;59:14–24. doi: 10.1194/jlr.M076752. PubMed DOI PMC
Imamura K., Tomita N., Kawakita Y., Ito Y., Ono K., Nii N., Miyazaki T., Yonemori K., Tawada M., Sumi H. Discovery of novel and potent stearoylcoenzyme A desaturase 1 (SCD1) inhibitors as anticancer agents. Bioorg. Med. Chem. 2017;25:3768–3779. doi: 10.1016/j.bmc.2017.05.016. PubMed DOI
Koeberle A., Loser K., Thurmer M. Stearoyl-CoA desaturase-1 and adaptive stress signaling. Biochim. Biophys. Acta. 2016;1861:1719–1726. doi: 10.1016/j.bbalip.2016.08.009. PubMed DOI
Tian J., Lou J., Cai Y., Rao M., Lu Z., Zhu Y., Zou D., Peng X., Wang H., Zhang M. Risk SNP-Mediated Enhancer-Promoter Interaction Drives Colorectal Cancer through Both FADS2 and AP002754.2. Cancer Res. 2020;80:1804–1818. doi: 10.1158/0008-5472.CAN-19-2389. PubMed DOI
Triki M., Rinaldi G., Planque M., Broekaert D., Winkelkotte A.M., Maier C.R., Janaki Raman S., Vandekeere A., Van Elsen J., Orth M.F. mTOR Signaling and SREBP activity increase FADS2 expression and can activate sapienate biosynthesis. Cell Rep. 2020;31:107806. doi: 10.1016/j.celrep.2020.107806. PubMed DOI PMC
Young R.S.E., Bowman A.P., Williams E.D., Tousignant K.D., Bidgood C.L., Narreddula V.R., Gupta R., Marshall D.L., Poad B.L.J., Nelson C.C. Apocryphal FADS2 activity promotes fatty acid diversification in cancer. Cell Rep. 2021;34:108738. doi: 10.1016/j.celrep.2021.108738. PubMed DOI
Mika A., Kobiela J., Czumaj A., Chmielewski M., Stepnowski P., Sledzinski T. Hyper-elongation in colorectal cancer tissue—Cerotic acid is a potential novel serum metabolic marker of colorectal malignancies. Cell. Physiol. Biochem. 2017;41:722–730. doi: 10.1159/000458431. PubMed DOI
Mika A., Kobiela J., Pakiet A., Czumaj A., Sokolowska E., Makarewicz W., Chmielewski M., Stepnowski P., Marino-Gammazza A., Sledzinski T. Preferential uptake of polyunsaturated fatty acids by colorectal cancer cells. Sci. Rep. 2020;10:1954. doi: 10.1038/s41598-020-58895-7. PubMed DOI PMC
Centenera M.M., Scott J.S., Machiels J., Nassar Z.D., Miller D.C., Zininos I., Dehairs J., Burvenich I.J.G., Zadra G., Chetta P. ELOVL5 is a critical and targetable fatty acid elongase in prostate cancer. Cancer Res. 2021;81:1704–1718. doi: 10.1158/0008-5472.CAN-20-2511. PubMed DOI
Feng Y.H., Chen W.Y., Kuo Y.H., Tung C.L., Tsao C.J., Shiau A.L., Wu C.L. Elovl6 is a poor prognostic predictor in breast cancer. Oncol. Lett. 2016;12:207–212. doi: 10.3892/ol.2016.4587. PubMed DOI PMC
Li H., Wang X., Tang J., Zhao H., Duan M. Decreased expression levels of ELOVL6 indicate poor prognosis in hepatocellular carcinoma. Oncol. Lett. 2019;18:6214–6220. doi: 10.3892/ol.2019.10974. PubMed DOI PMC
Su Y.C., Feng Y.H., Wu H.T., Huang Y.S., Tung C.L., Wu P., Chang C.J., Shiau A.L., Wu C.L. Elovl6 is a negative clinical predictor for liver cancer and knockdown of Elovl6 reduces murine liver cancer progression. Sci. Rep. 2018;8:6586. doi: 10.1038/s41598-018-24633-3. PubMed DOI PMC
Moon Y.A., Ochoa C.R., Mitsche M.A., Hammer R.E., Horton J.D. Deletion of ELOVL6 blocks the synthesis of oleic acid but does not prevent the development of fatty liver or insulin resistance. J. Lipid Res. 2014;55:2597–2605. doi: 10.1194/jlr.M054353. PubMed DOI PMC
Moon Y.A., Shah N.A., Mohapatra S., Warrington J.A., Horton J.D. Identification of a mammalian long chain fatty acyl elongase regulated by sterol regulatory element-binding proteins. J. Biol. Chem. 2001;276:45358–45366. doi: 10.1074/jbc.M108413200. PubMed DOI
Makide K., Kitamura H., Sato Y., Okutani M., Aoki J. Emerging lysophospholipid mediators, lysophosphatidylserine, lysophosphatidylthreonine, lysophosphatidylethanolamine and lysophosphatidylglycerol. Prostaglandins Other Lipid Mediat. 2009;89:135–139. doi: 10.1016/j.prostaglandins.2009.04.009. PubMed DOI
Koeberle A., Shindou H., Harayama T., Shimizu T. Palmitoleate is a mitogen, formed upon stimulation with growth factors, and converted to palmitoleoyl-phosphatidylinositol. J. Biol. Chem. 2012;287:27244–27254. doi: 10.1074/jbc.M111.274829. PubMed DOI PMC
Tylichová Z., Slavík J., Ciganek M., Ovesná P., Krčmář P., Straková N., Machala M., Kozubík A., Hofmanová J., Vondráček J. Butyrate and docosahexaenoic acid interact in alterations of specific lipid classes in differentiating colon cancer cells. J. Cell. Biochem. 2018;119:4664–4679. doi: 10.1002/jcb.26641. PubMed DOI
Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959;37:911–917. doi: 10.1139/o59-099. PubMed DOI
Kang J.X., Wang J. A simplified method for analysis of polyunsaturated fatty acids. BMC Biochem. 2005;6:5. doi: 10.1186/1471-2091-6-5. PubMed DOI PMC
Cottet V., Vaysse C., Scherrer M.L., Ortega-Deballon P., Lakkis Z., Delhorme J.B., Deguelte-Lardiere S., Combe N., Bonithon-Kopp C. Fatty acid composition of adipose tissue and colorectal cancer: A case-control study. Am. J. Clin. Nutr. 2015;101:192–201. doi: 10.3945/ajcn.114.088948. PubMed DOI
Svendsen K., Olsen T., Nordstrand Rusvik T.C., Ulven S.M., Holven K.B., Retterstol K., Telle-Hansen V.H. Fatty acid profile and estimated desaturase activities in whole blood are associated with metabolic health. Lipids Health Dis. 2020;19:102. doi: 10.1186/s12944-020-01282-y. PubMed DOI PMC
Hurtado del Pozo C., Calvo R.M., Vesperinas-Garcia G., Gomez-Ambrosi J., Fruhbeck G., Corripio-Sanchez R., Rubio M.A., Obregon M.J. IPO8 and FBXL10: New reference genes for gene expression studies in human adipose tissue. Obesity. 2010;18:897–903. doi: 10.1038/oby.2009.374. PubMed DOI
Krzystek-Korpacka M., Hotowy K., Czapinska E., Podkowik M., Bania J., Gamian A., Bednarz-Misa I. Serum availability affects expression of common house-keeping genes in colon adenocarcinoma cell lines: Implications for quantitative real-time PCR studies. Cytotechnology. 2016;68:2503–2517. doi: 10.1007/s10616-016-9971-4. PubMed DOI PMC
Nguewa P.A., Agorreta J., Blanco D., Lozano M.D., Gomez-Roman J., Sanchez B.A., Valles I., Pajares M.J., Pio R., Rodriguez M.J. Identification of importin 8 (IPO8) as the most accurate reference gene for the clinicopathological analysis of lung specimens. BMC Mol. Biol. 2008;9:103. doi: 10.1186/1471-2199-9-103. PubMed DOI PMC
Sørby L.A., Andersen S.N., Bukholm I.R., Jacobsen M.B. Evaluation of suitable reference genes for normalization of real-time reverse transcription PCR analysis in colon cancer. J. Exp. Clin. Cancer Res. 2010;29:144. doi: 10.1186/1756-9966-29-144. PubMed DOI PMC
Schmittgen T.D., Livak K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008;3:1101–1108. doi: 10.1038/nprot.2008.73. PubMed DOI