Colon Cancer and Perturbations of the Sphingolipid Metabolism
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
CZ.02.1.01/0.0/0.0/15_003/0000495
Ministerstvo Školství, Mládeže a Tělovýchovy
15-30585A
Agentura Pro Zdravotnický Výzkum České Republiky
PubMed
31801289
PubMed Central
PMC6929044
DOI
10.3390/ijms20236051
PII: ijms20236051
Knihovny.cz E-resources
- Keywords
- colon cancer (CRC) sphingolipidomics, colon cancer cells, colorectal cancer, glycosphingolipid, lactosylceramide, sphingolipid, sphingosine-1-phosphate,
- MeSH
- Alkaline Ceramidase genetics metabolism MeSH
- Ceramides metabolism MeSH
- Phosphotransferases (Alcohol Group Acceptor) genetics metabolism MeSH
- Acid Ceramidase genetics metabolism MeSH
- Lactosylceramides metabolism MeSH
- Humans MeSH
- Lysophospholipids metabolism MeSH
- Lipid Metabolism genetics MeSH
- Disease Models, Animal MeSH
- Tumor Cells, Cultured MeSH
- Colonic Neoplasms enzymology genetics pathology MeSH
- Neutral Ceramidase genetics metabolism MeSH
- Proto-Oncogene Proteins c-akt genetics metabolism MeSH
- Gene Expression Regulation, Neoplastic * MeSH
- Sphingolipids metabolism MeSH
- Sphingosine N-Acyltransferase genetics metabolism MeSH
- Sphingosine analogs & derivatives metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- ACER2 protein, human MeSH Browser
- Alkaline Ceramidase MeSH
- ASAH1 protein, human MeSH Browser
- ASAH2 protein, human MeSH Browser
- ceramide 1-phosphate MeSH Browser
- Ceramides MeSH
- Phosphotransferases (Alcohol Group Acceptor) MeSH
- Acid Ceramidase MeSH
- Lactosylceramides MeSH
- Lysophospholipids MeSH
- Neutral Ceramidase MeSH
- Proto-Oncogene Proteins c-akt MeSH
- Sphingolipids MeSH
- Sphingosine N-Acyltransferase MeSH
- Sphingosine MeSH
- sphingosine 1-phosphate MeSH Browser
- sphingosine kinase MeSH Browser
The development and progression of colorectal cancer (CRC), a major cause of cancer-related death in the western world, is accompanied with alterations of sphingolipid (SL) composition in colon tumors. A number of enzymes involved in the SL metabolism have been found to be deregulated in human colon tumors, in experimental rodent studies, and in human colon cancer cells in vitro. Therefore, the enzymatic pathways that modulate SL levels have received a significant attention, due to their possible contribution to CRC development, or as potential therapeutic targets. Many of these enzymes are associated with an increased sphingosine-1-phosphate/ceramide ratio, which is in turn linked with increased colon cancer cell survival, proliferation and cancer progression. Nevertheless, more attention should also be paid to the more complex SLs, including specific glycosphingolipids, such as lactosylceramides, which can be also deregulated during CRC development. In this review, we focus on the potential roles of individual SLs/SL metabolism enzymes in colon cancer, as well as on the pros and cons of employing the current in vitro models of colon cancer cells for lipidomic studies investigating the SL metabolism in CRC.
See more in PubMed
Pakiet A., Kobiela J., Stepnowski P., Sledzinski T., Mika A. Changes in lipids composition and metabolism in colorectal cancer: A review. Lipids Health Dis. 2019;18:29. doi: 10.1186/s12944-019-0977-8. PubMed DOI PMC
Bandu R., Mok H.J., Kim K.P. Phospholipids as cancer biomarkers: Mass spectrometry-based analysis. Mass Spectrom. Rev. 2018;37:107–138. doi: 10.1002/mas.21510. PubMed DOI
García-Barros M., Coant N., Truman J.P., Snider A.J., Hannun Y.A. Sphingolipids in colon cancer. Biochim. Biophys. Acta. 2014;1841:773–782. doi: 10.1016/j.bbalip.2013.09.007. PubMed DOI PMC
Hannun Y.A., Obeid L.M. Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol. 2018;19:175–191. doi: 10.1038/nrm.2017.107. PubMed DOI PMC
Milhas D., Clarke C.J., Hannun Y.A. Sphingomyelin metabolism at the plasma membrane: Implications for bioactive sphingolipids. FEBS Lett. 2010;584:1887–1894. doi: 10.1016/j.febslet.2009.10.058. PubMed DOI PMC
Brachtendorf S., El-Hindi K., Grosch S. Ceramide synthases in cancer therapy and chemoresistance. Prog. Lipid Res. 2019;74:100992. doi: 10.1016/j.plipres.2019.100992. PubMed DOI
Ponnusamy S., Meyers-Needham M., Senkal C.E., Saddoughi S.A., Sentelle D., Selvam S.P., Salas A., Ogretmen B. Sphingolipids and cancer: Ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance. Future Oncol. 2010;6:1603–1624. doi: 10.2217/fon.10.116. PubMed DOI PMC
Coant N., Sakamoto W., Mao C., Hannun Y.A. Ceramidases, roles in sphingolipid metabolism and in health and disease. Adv. Biol. Regul. 2017;63:122–131. doi: 10.1016/j.jbior.2016.10.002. PubMed DOI PMC
Selzner M., Bielawska A., Morse M.A., Rudiger H.A., Sindram D., Hannun Y.A., Clavien P.A. Induction of apoptotic cell death and prevention of tumor growth by ceramide analogues in metastatic human colon cancer. Cancer Res. 2001;61:1233–1240. PubMed
Ahn E.H., Schroeder J.J. Sphingoid bases and ceramide induce apoptosis in HT-29 and HCT-116 human colon cancer cells. Exp. Biol. Med. 2002;227:345–353. doi: 10.1177/153537020222700507. PubMed DOI
Grösch S., Schiffmann S., Geisslinger G. Chain length-specific properties of ceramides. Prog. Lipid Res. 2012;51:50–62. doi: 10.1016/j.plipres.2011.11.001. PubMed DOI
Sassa T., Suto S., Okayasu Y., Kihara A. A shift in sphingolipid composition from C24 to C16 increases susceptibility to apoptosis in HeLa cells. Biochim. Biophys. Acta. 2012;1821:1031–1037. doi: 10.1016/j.bbalip.2012.04.008. PubMed DOI
Schiffmann S., Ziebell S., Sandner J., Birod K., Deckmann K., Hartmann D., Rode S., Schmidt H., Angioni C., Geisslinger G., et al. Activation of ceramide synthase 6 by celecoxib leads to a selective induction of C16:0-ceramide. Biochem. Pharm. 2010;80:1632–1640. doi: 10.1016/j.bcp.2010.08.012. PubMed DOI
Skender B., Hofmanová J., Slavík J., Jelínková I., Machala M., Moyer M.P., Kozubík A., Hyršlová Vaculová A. DHA-mediated enhancement of TRAIL-induced apoptosis in colon cancer cells is associated with engagement of mitochondria and specific alterations in sphingolipid metabolism. Biochim. Biophys. Acta. 2014;1841:1308–1317. doi: 10.1016/j.bbalip.2014.06.005. PubMed DOI
Tylichová Z., Slavík J., Ciganek M., Ovesná P., Krčmář P., Straková N., Machala M., Kozubík A., Hofmanová J., Vondráček J. Butyrate and docosahexaenoic acid interact in alterations of specific lipid classes in differentiating colon cancer cells. J. Cell Biochem. 2018;119:4664–4679. doi: 10.1002/jcb.26641. PubMed DOI
Realini N., Solorzano C., Pagliuca C., Pizzirani D., Armirotti A., Luciani R., Costi M.P., Bandiera T., Piomelli D. Discovery of highly potent acid ceramidase inhibitors with in vitro tumor chemosensitizing activity. Sci. Rep. 2013;3:1035. doi: 10.1038/srep01035. PubMed DOI PMC
Kono M., Dreier J.L., Ellis J.M., Allende M.L., Kalkofen D.N., Sanders K.M., Bielawski J., Bielawska A., Hannun Y.A., Proia R.L. Neutral ceramidase encoded by the Asah2 gene is essential for the intestinal degradation of sphingolipids. J. Biol. Chem. 2006;281:7324–7331. doi: 10.1074/jbc.M508382200. PubMed DOI
García-Barros M., Coant N., Kawamori T., Wada M., Snider A.J., Truman J.P., Wu B.X., Furuya H., Clarke C.J., Bialkowska A.B., et al. Role of neutral ceramidase in colon cancer. FASEB J. 2016;30:4159–4171. doi: 10.1096/fj.201600611R. PubMed DOI PMC
Coant N., Garcia-Barros M., Zhang Q., Obeid L.M., Hannun Y.A. AKT as a key target for growth promoting functions of neutral ceramidase in colon cancer cells. Oncogene. 2018;37:3852–3863. doi: 10.1038/s41388-018-0236-x. PubMed DOI PMC
Xu R., Garcia-Barros M., Wen S., Li F., Lin C.L., Hannun Y.A., Obeid L.M., Mao C. Tumor suppressor p53 links ceramide metabolism to DNA damage response through alkaline ceramidase 2. Cell Death Differ. 2018;25:841–856. doi: 10.1038/s41418-017-0018-y. PubMed DOI PMC
Brachtendorf S., Wanger R.A., Birod K., Thomas D., Trautmann S., Wegner M.S., Fuhrmann D.C., Brune B., Geisslinger G., Grosch S. Chemosensitivity of human colon cancer cells is influenced by a p53-dependent enhancement of ceramide synthase 5 and induction of autophagy. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2018;1863:1214–1227. doi: 10.1016/j.bbalip.2018.07.011. PubMed DOI
Fitzgerald S., Sheehan K.M., Espina V., O’Grady A., Cummins R., Kenny D., Liotta L., O’Kennedy R., Kay E.W., Kijanka G.S. High CerS5 expression levels associate with reduced patient survival and transition from apoptotic to autophagy signalling pathways in colorectal cancer. J. Pathol. Clin. Res. 2015;1:54–65. doi: 10.1002/cjp2.5. PubMed DOI PMC
Hoeferlin L.A., Fekry B., Ogretmen B., Krupenko S.A., Krupenko N.I. Folate stress induces apoptosis via p53-dependent de novo ceramide synthesis and up-regulation of ceramide synthase 6. J. Biol. Chem. 2013;288:12880–12890. doi: 10.1074/jbc.M113.461798. PubMed DOI PMC
Fekry B., Esmaeilniakooshkghazi A., Krupenko S.A., Krupenko N.I. Ceramide synthase 6 is a novel target of methotrexate mediating its antiproliferative effect in a p53-dependent manner. PLoS ONE. 2016;11:e0146618. doi: 10.1371/journal.pone.0146618. PubMed DOI PMC
Mullen T.D., Jenkins R.W., Clarke C.J., Bielawski J., Hannun Y.A., Obeid L.M. Ceramide synthase-dependent ceramide generation and programmed cell death: Involvement of salvage pathway in regulating postmitochondrial events. J. Biol. Chem. 2011;286:15929–15942. doi: 10.1074/jbc.M111.230870. PubMed DOI PMC
Abdul Aziz N.A., Mokhtar N.M., Harun R., Mollah M.M., Mohamed Rose I., Sagap I., Mohd Tamil A., Wan Ngah W.Z., Jamal R. A 19-gene expression signature as a predictor of survival in colorectal cancer. BMC Med. Genom. 2016;9:58. doi: 10.1186/s12920-016-0218-1. PubMed DOI PMC
Jang S.W., Park W.J., Min H., Kwon T.K., Baek S.K., Hwang I., Kim S., Park J.W. Altered mRNA expression levels of the major components of sphingolipid metabolism, ceramide synthases and their clinical implication in colorectal cancer. Oncol. Rep. 2018;40:3489–3500. doi: 10.3892/or.2018.6712. PubMed DOI
Hartmann D., Lucks J., Fuchs S., Schiffmann S., Schreiber Y., Ferreiros N., Merkens J., Marschalek R., Geisslinger G., Grosch S. Long chain ceramides and very long chain ceramides have opposite effects on human breast and colon cancer cell growth. Int. J. Biochem. Cell Biol. 2012;44:620–628. doi: 10.1016/j.biocel.2011.12.019. PubMed DOI
Corcoran C.A., He Q., Ponnusamy S., Ogretmen B., Huang Y., Sheikh M.S. Neutral sphingomyelinase-3 is a DNA damage and nongenotoxic stress-regulated gene that is deregulated in human malignancies. Mol. Cancer Res. 2008;6:795–807. doi: 10.1158/1541-7786.MCR-07-2097. PubMed DOI PMC
Hertervig E., Nilsson A., Bjork J., Hultkrantz R., Duan R.D. Familial adenomatous polyposis is associated with a marked decrease in alkaline sphingomyelinase activity: A key factor to the unrestrained cell proliferation? Br. J. Cancer. 1999;81:232–236. doi: 10.1038/sj.bjc.6690682. PubMed DOI PMC
Hertervig E., Nilsson A., Nilbert M., Duan R.D. Reduction in alkaline sphingomyelinase in colorectal tumorigenesis is not related to the APC gene mutation. Int. J. Colorectal Dis. 2003;18:309–313. PubMed
Chen Y., Zhang P., Xu S.C., Yang L., Voss U., Ekblad E., Wu Y., Min Y., Hertervig E., Nilsson A., et al. Enhanced colonic tumorigenesis in alkaline sphingomyelinase (NPP7) knockout mice. Mol. Cancer Ther. 2015;14:259–267. doi: 10.1158/1535-7163.MCT-14-0468-T. PubMed DOI
Schmelz E.M., Roberts P.C., Kustin E.M., Lemonnier L.A., Sullards M.C., Dillehay D.L., Merrill A.H., Jr. Modulation of intracellular beta-catenin localization and intestinal tumorigenesis in vivo and in vitro by sphingolipids. Cancer Res. 2001;61:6723–6729. PubMed
Kohno M., Momoi M., Oo M.L., Paik J.H., Lee Y.M., Venkataraman K., Ai Y., Ristimaki A.P., Fyrst H., Sano H., et al. Intracellular role for sphingosine kinase 1 in intestinal adenoma cell proliferation. Mol. Cell. Biol. 2006;26:7211–7223. doi: 10.1128/MCB.02341-05. PubMed DOI PMC
Pyne N.J., Tonelli F., Lim K.G., Long J.S., Edwards J., Pyne S. Sphingosine 1-phosphate signalling in cancer. Biochem. Soc. Trans. 2012;40:94–100. doi: 10.1042/BST20110602. PubMed DOI
Xia P., Gamble J.R., Wang L., Pitson S.M., Moretti P.A., Wattenberg B.W., D’Andrea R.J., Vadas M.A. An oncogenic role of sphingosine kinase. Curr. Biol. 2000;10:1527–1530. doi: 10.1016/S0960-9822(00)00834-4. PubMed DOI
Degagne E., Pandurangan A., Bandhuvula P., Kumar A., Eltanawy A., Zhang M., Yoshinaga Y., Nefedov M., de Jong P.J., Fong L.G., et al. Sphingosine-1-phosphate lyase downregulation promotes colon carcinogenesis through STAT3-activated microRNAs. J. Clin. Investig. 2014;124:5368–5384. doi: 10.1172/JCI74188. PubMed DOI PMC
Liang J., Nagahashi M., Kim E.Y., Harikumar K.B., Yamada A., Huang W.C., Hait N.C., Allegood J.C., Price M.M., Avni D., et al. Sphingosine-1-phosphate links persistent stat3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell. 2013;23:107–120. doi: 10.1016/j.ccr.2012.11.013. PubMed DOI PMC
Mizutani N., Omori Y., Tanaka K., Ito H., Takagi A., Kojima T., Nakatochi M., Ogiso H., Kawamoto Y., Nakamura M., et al. Increased SPHK2 transcription of human colon cancer cells in serum-depleted culture: The involvement of CREB transcription factor. J. Cell Biochem. 2015;116:2227–2238. doi: 10.1002/jcb.25173. PubMed DOI
Kawamori T., Kaneshiro T., Okumura M., Maalouf S., Uflacker A., Bielawski J., Hannun Y.A., Obeid L.M. Role for sphingosine kinase 1 in colon carcinogenesis. FASEB J. 2009;23:405–414. doi: 10.1096/fj.08-117572. PubMed DOI PMC
Li W., Yu C.P., Xia J.T., Zhang L., Weng G.X., Zheng H.Q., Kong Q.L., Hu L.J., Zeng M.S., Zeng Y.X., et al. Sphingosine kinase 1 is associated with gastric cancer progression and poor survival of patients. Clin. Cancer Res. 2009;15:1393–1399. doi: 10.1158/1078-0432.CCR-08-1158. PubMed DOI
Tan S.S., Khin L.W., Wong L., Yan B., Ong C.W., Datta A., Salto-Tellez M., Lam Y., Yap C.T. Sphingosine kinase 1 promotes malignant progression in colon cancer and independently predicts survival of patients with colon cancer by competing risk approach in South asian population. Clin. Transl. Gastroenterol. 2014;5:e51. doi: 10.1038/ctg.2013.21. PubMed DOI PMC
Kawamori T., Osta W., Johnson K.R., Pettus B.J., Bielawski J., Tanaka T., Wargovich M.J., Reddy B.S., Hannun Y.A., Obeid L.M., et al. Sphingosine kinase 1 is up-regulated in colon carcinogenesis. FASEB J. 2006;20:386–388. doi: 10.1096/fj.05-4331fje. PubMed DOI
Oskouian B., Saba J. Sphingosine-1-phosphate metabolism and intestinal tumorigenesis: Lipid signaling strikes again. Cell Cycle. 2007;6:522–527. doi: 10.4161/cc.6.5.3903. PubMed DOI
Oskouian B., Sooriyakumaran P., Borowsky A.D., Crans A., Dillard-Telm L., Tam Y.Y., Bandhuvula P., Saba J.D. Sphingosine-1-phosphate lyase potentiates apoptosis via p53- and p38-dependent pathways and is down-regulated in colon cancer. Proc. Natl. Acad. Sci. USA. 2006;103:17384–17389. doi: 10.1073/pnas.0600050103. PubMed DOI PMC
Schwiebs A., Herrero San Juan M., Schmidt K.G., Wiercinska E., Anlauf M., Ottenlinger F., Thomas D., Elwakeel E., Weigert A., Farin H.F., et al. Cancer-induced inflammation and inflammation-induced cancer in colon: A role for s1p lyase. Oncogene. 2019;38:4788–4803. doi: 10.1038/s41388-019-0758-x. PubMed DOI
Patwardhan G.A., Liu Y.Y. Sphingolipids and expression regulation of genes in cancer. Prog. Lipid Res. 2011;50:104–114. doi: 10.1016/j.plipres.2010.10.003. PubMed DOI PMC
Song M., Zang W., Zhang B., Cao J., Yang G. GCS overexpression is associated with multidrug resistance of human HCT-8 colon cancer cells. J. Exp. Clin. Cancer Res. 2012;31:23. doi: 10.1186/1756-9966-31-23. PubMed DOI PMC
Wegner M.S., Gruber L., Mattjus P., Geisslinger G., Grosch S. The UDP-glucose ceramide glycosyltransferase (UGCG) and the link to multidrug resistance protein 1 (MDR1) BMC Cancer. 2018;18:153. doi: 10.1186/s12885-018-4084-4. PubMed DOI PMC
Hosain S.B., Khiste S.K., Uddin M.B., Vorubindi V., Ingram C., Zhang S., Hill R.A., Gu X., Liu Y.Y. Inhibition of glucosylceramide synthase eliminates the oncogenic function of p53 R273H mutant in the epithelial-mesenchymal transition and induced pluripotency of colon cancer cells. Oncotarget. 2016;7:60575–60592. doi: 10.18632/oncotarget.11169. PubMed DOI PMC
Jennemann R., Federico G., Mathow D., Rabionet M., Rampoldi F., Popovic Z.V., Volz M., Hielscher T., Sandhoff R., Grone H.J. Inhibition of hepatocellular carcinoma growth by blockade of glycosphingolipid synthesis. Oncotarget. 2017;8:109201–109216. doi: 10.18632/oncotarget.22648. PubMed DOI PMC
Chatterjee S., Kolmakova A., Rajesh M. Regulation of lactosylceramide synthase (glucosylceramide beta1 > 4 galactosyltransferase); implication as a drug target. Curr. Drug Targets. 2008;9:272–281. doi: 10.2174/138945008783954952. PubMed DOI
Chatterjee S., Pandey A. The Yin and Yang of lactosylceramide metabolism: Implications in cell function. Biochim. Biophys. Acta. 2008;1780:370–382. doi: 10.1016/j.bbagen.2007.08.010. PubMed DOI
Kakugawa Y., Wada T., Yamaguchi K., Yamanami H., Ouchi K., Sato I., Miyagi T. Up-regulation of plasma membrane-associated ganglioside sialidase (Neu3) in human colon cancer and its involvement in apoptosis suppression. Proc. Natl. Acad. Sci. USA. 2002;99:10718–10723. doi: 10.1073/pnas.152597199. PubMed DOI PMC
Chatterjee S.B., Hou J., Bandaru V.V.R., Pezhouh M.K., Syed Rifat Mannan A.A., Sharma R. Lactosylceramide synthase beta-1,4-GalT-V: A novel target for the diagnosis and therapy of human colorectal cancer. Biochem. Biophys. Res. Commun. 2019;508:380–386. doi: 10.1016/j.bbrc.2018.11.149. PubMed DOI
D’Angelo G., Capasso S., Sticco L., Russo D. Glycosphingolipids: Synthesis and functions. FEBS J. 2013;280:6338–6353. doi: 10.1111/febs.12559. PubMed DOI
Chuang P.K., Hsiao M., Hsu T.L., Chang C.F., Wu C.Y., Chen B.R., Huang H.W., Liao K.S., Chen C.C., Chen C.L., et al. Signaling pathway of globo-series glycosphingolipids and beta1,3-galactosyltransferase V (beta3GalT5) in breast cancer. Proc. Natl. Acad. Sci. USA. 2019;116:3518–3523. doi: 10.1073/pnas.1816946116. PubMed DOI PMC
Zhao X., Brusadelli M.G., Sauter S., Butsch Kovacic M., Zhang W., Romick-Rosendale L.E., Lambert P.F., Setchell K.D.R., Wells S.I. Lipidomic profiling links the Fanconi anemia pathway to glycosphingolipid metabolism in head and neck cancer cells. Clin. Cancer Res. 2018;24:2700–2709. doi: 10.1158/1078-0432.CCR-17-3686. PubMed DOI PMC
Russo D., Capolupo L., Loomba J.S., Sticco L., D’Angelo G. Glycosphingolipid metabolism in cell fate specification. J. Cell Sci. 2018;131 doi: 10.1242/jcs.219204. PubMed DOI
Miyagi T., Wada T., Yamaguchi K. Roles of plasma membrane-associated sialidase NEU3 in human cancers. Biochim. Biophys. Acta. 2008;1780:532–537. doi: 10.1016/j.bbagen.2007.09.016. PubMed DOI
Miyagi T., Wada T., Yamaguchi K., Hata K., Shiozaki K. Plasma membrane-associated sialidase as a crucial regulator of transmembrane signalling. J. Biochem. 2008;144:279–285. doi: 10.1093/jb/mvn089. PubMed DOI
Wada T., Hata K., Yamaguchi K., Shiozaki K., Koseki K., Moriya S., Miyagi T. A crucial role of plasma membrane-associated sialidase in the survival of human cancer cells. Oncogene. 2007;26:2483–2490. doi: 10.1038/sj.onc.1210341. PubMed DOI
Blank A., Roberts D.E., Dawson H., Zlobec I., Lugli A. Tumor heterogeneity in primary colorectal cancer and corresponding metastases. Does the apple fall far from the tree? Front. Med. 2018;5:234. doi: 10.3389/fmed.2018.00234. PubMed DOI PMC
Procházková J., Slavík J., Bouchal J., Levková M., Hušková Z., Ehrmann J., Kolář Z., Ovesná P., Skalický P., Straková N., et al. Specific alterations of sphingolipid metabolism in EpCAM+ cells isolated from human colorectal adenocarcinoma tissue. Clin. Chem. manuscript in preparation. PubMed
Skrzypczak M., Goryca K., Rubel T., Paziewska A., Mikula M., Jarosz D., Pachlewski J., Oledzki J., Ostrowski J. Modeling oncogenic signaling in colon tumors by multidirectional analyses of microarray data directed for maximization of analytical reliability. PLoS ONE. 2010;5:e0013091. doi: 10.1371/annotation/8c585739-a354-4fc9-a7d0-d5ae26fa06ca. PubMed DOI PMC
Hofmanová J., Slavík J., Ovesná P., Tylichová Z., Vondráček J., Straková N., Vaculová A.H., Ciganek M., Kozubík A., Knopfová L., et al. Dietary fatty acids specifically modulate phospholipid pattern in colon cells with distinct differentiation capacities. Eur. J. Nutr. 2017;56:1493–1508. doi: 10.1007/s00394-016-1196-y. PubMed DOI
Hofmanová J., Vaculová A., Koubková Z., Hyzd’alová M., Kozubík A. Human fetal colon cells and colon cancer cells respond differently to butyrate and PUFAs. Mol. Nutr. Food Res. 2009;53(Suppl. 1):102–113. doi: 10.1002/mnfr.200800175. PubMed DOI
Ahmed D., Eide P.W., Eilertsen I.A., Danielsen S.A., Eknaes M., Hektoen M., Lind G.E., Lothe R.A. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis. 2013;2:e71. doi: 10.1038/oncsis.2013.35. PubMed DOI PMC
Peng W., Tan S., Xu Y., Wang L., Qiu D., Cheng C., Lin Y., Liu C., Li Z., Li Y., et al. LCMS/MS metabolome analysis detects the changes in the lipid metabolic profiles of dMMR and pMMR cells. Oncol. Rep. 2018;40:1026–1034. doi: 10.3892/or.2018.6510. PubMed DOI
Hofmanová J., Slavík J., Ovesná P., Tylichová Z., Dušek L., Straková N., Hyršlová Vaculová A., Ciganek M., Kala Z., Jíra M., et al. Phospholipid profiling enables to discriminate tumor- and non-tumor-derived human colon epithelial cells: phospholipidome similarities and differences in colon cancer cell lines and in patient-derived cell samples. PLoS ONE. (under review) PubMed PMC
Camp E.R., Patterson L.D., Kester M., Voelkel-Johnson C. Therapeutic implications of bioactive sphingolipids: A focus on colorectal cancer. Cancer Biol. Ther. 2017;18:640–650. doi: 10.1080/15384047.2017.1345396. PubMed DOI PMC