Inhibition of Aryl Hydrocarbon Receptor (AhR) Expression Disrupts Cell Proliferation and Alters Energy Metabolism and Fatty Acid Synthesis in Colon Cancer Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-00236S
Czech Science Foundation
NU21-03-00421
Ministry of Health
BBMRI-CZ No. CZ.02.1.01/0.0/0.0/16_013/0001674
European Regional Development Fund
RVO: 68081707
Czech Academy of Sciences
RO0520
Ministry of Agriculture
DRO-FNOL00098892
Ministry of Health
PubMed
36077780
PubMed Central
PMC9454859
DOI
10.3390/cancers14174245
PII: cancers14174245
Knihovny.cz E-zdroje
- Klíčová slova
- AhR, Akt pathway, colon cancer cells, fatty acid synthesis, metabolism, proliferation,
- Publikační typ
- časopisecké články MeSH
The aryl hydrocarbon receptor (AhR) plays a wide range of physiological roles in cellular processes such as proliferation, migration or control of immune responses. Several studies have also indicated that AhR might contribute to the regulation of energy balance or cellular metabolism. We observed that the AhR is upregulated in tumor epithelial cells derived from colon cancer patients. Using wild-type and the corresponding AhR knockout (AhR KO) variants of human colon cancer cell lines HCT116 and HT-29, we analyzed possible role(s) of the AhR in cell proliferation and metabolism, with a focus on regulation of the synthesis of fatty acids (FAs). We observed a decreased proliferation rate in the AhR KO cells, which was accompanied with altered cell cycle progression, as well as a decreased ATP production. We also found reduced mRNA levels of key enzymes of the FA biosynthetic pathway in AhR KO colon cancer cells, in particular of stearoyl-CoA desaturase 1 (SCD1). The loss of AhR was also associated with reduced expression and/or activity of components of the PI3K/Akt pathway, which controls lipid metabolism, and other lipogenic transcriptional regulators, such as sterol regulatory element binding transcription factor 1 (SREBP1). Together, our data indicate that disruption of AhR activity in colon tumor cells may, likely in a cell-specific manner, limit their proliferation, which could be linked with a suppressive effect on their endogenous FA metabolism. More attention should be paid to potential mechanistic links between overexpressed AhR and colon tumor cell metabolism.
Department of Experimental Biology Faculty of Science Masaryk University 62500 Brno Czech Republic
Department of Pharmacology and Toxicology Veterinary Research Institute 62100 Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno 65691 Brno Czech Republic
Zobrazit více v PubMed
Siegel R.L., Miller K.D., Goding Sauer A., Fedewa S.A., Butterly L.F., Anderson J.C., Cercek A., Smith R.A., Jemal A. Colorectal cancer statistics, 2020. CA Cancer J. Clin. 2020;70:145–164. doi: 10.3322/caac.21601. PubMed DOI
Keum N., Giovannucci E. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol. 2019;16:713–732. doi: 10.1038/s41575-019-0189-8. PubMed DOI
Peck B., Schulze A. Lipid metabolism at the nexus of diet and tumor microenvironment. Trends Cancer. 2019;5:693–703. doi: 10.1016/j.trecan.2019.09.007. PubMed DOI
Vander Heiden M.G. Targeting cancer metabolism: A therapeutic window opens. Nat. Reviews Drug Discov. 2011;10:671–684. doi: 10.1038/nrd3504. PubMed DOI
Vander Heiden M.G., DeBerardinis R.J. Understanding the intersections between metabolism and cancer biology. Cell. 2017;168:657–669. doi: 10.1016/j.cell.2016.12.039. PubMed DOI PMC
Zaytseva Y. Lipid metabolism as a targetable metabolic vulnerability in colorectal cancer. Cancers. 2021;13:301. doi: 10.3390/cancers13020301. PubMed DOI PMC
Murray I.A., Patterson A.D., Perdew G.H. Aryl hydrocarbon receptor ligands in cancer: Friend and foe. Nat. Rev. Cancer. 2014;14:801–814. doi: 10.1038/nrc3846. PubMed DOI PMC
Opitz C.A., Litzenburger U.M., Sahm F., Ott M., Tritschler I., Trump S., Schumacher T., Jestaedt L., Schrenk D., Weller M., et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 2011;478:197–203. doi: 10.1038/nature10491. PubMed DOI
Safe S., Jayaraman A., Chapkin R.S. Ah receptor ligands and their impacts on gut resilience: Structure–activity effects. Crit. Rev. Toxicol. 2020;50:463–473. doi: 10.1080/10408444.2020.1773759. PubMed DOI PMC
Andrysík Z., Vondráček J., Machala M., Krčmář P., Švihálková-Šindlerová L., Kranz A., Weiss C., Faust D., Kozubík A., Dietrich C. The aryl hydrocarbon receptor-dependent deregulation of cell cycle control induced by polycyclic aromatic hydrocarbons in rat liver epithelial cells. Mutat. Res. 2007;615:87–97. doi: 10.1016/j.mrfmmm.2006.10.004. PubMed DOI
Dietrich C. The AHR in the control of cell cycle and apoptosis. In: Pohjanvirta R., editor. The AH Receptor in Biology and Toxicology. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2011. pp. 467–483.
Dietrich C., Kaina B. The aryl hydrocarbon receptor (AhR) in the regulation of cell-cell contact and tumor growth. Carcinogenesis. 2010;31:1319–1328. doi: 10.1093/carcin/bgq028. PubMed DOI PMC
Goode G., Pratap S., Eltom S.E. Depletion of the aryl hydrocarbon receptor in MDA-MB-231 human breast cancer cells altered the expression of genes in key regulatory pathways of cancer. PLoS ONE. 2014;9:e100103. doi: 10.1371/journal.pone.0100103. PubMed DOI PMC
Goode G.D., Ballard B.R., Manning H.C., Freeman M.L., Kang Y., Eltom S.E. Knockdown of aberrantly upregulated aryl hydrocarbon receptor reduces tumor growth and metastasis of MDA-MB-231 human breast cancer cell line: AhR knockdown and breast cancer growth and metastasis. Int. J. Cancer. 2013;133:2769–2780. doi: 10.1002/ijc.28297. PubMed DOI PMC
Gutiérrez-Vázquez C., Quintana F.J. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity. 2018;48:19–33. doi: 10.1016/j.immuni.2017.12.012. PubMed DOI PMC
Larigot L., Juricek L., Dairou J., Coumoul X. AhR signaling pathways and regulatory functions. Biochim. Open. 2018;7:1–9. doi: 10.1016/j.biopen.2018.05.001. PubMed DOI PMC
Gonzalez F.J., Fernandez-Salguero P. The aryl hydrocarbon receptor: Studies using the AHR-null mice. Drug Metab. Dispos. 1998;26:1194–1198. PubMed
Schmidt J.V., Su G.H., Reddy J.K., Simon M.C., Bradfield C.A. Characterization of a murine Ahr null allele: Involvement of the Ah receptor in hepatic growth and development. Proc. Natl. Acad. Sci. USA. 1996;93:6731–6736. doi: 10.1073/pnas.93.13.6731. PubMed DOI PMC
Safe S., Lee S.O., Jin U.H. Role of the aryl hydrocarbon receptor in carcinogenesis and potential as a drug target. Toxicol. Sci. 2013;135:1–16. doi: 10.1093/toxsci/kft128. PubMed DOI PMC
Kawajiri K., Kobayashi Y., Ohtake F., Ikuta T., Matsushima Y., Mimura J., Pettersson S., Pollenz R.S., Sakaki T., Hirokawa T., et al. Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in ApcMin/+ mice with natural ligands. Proc. Natl. Acad. Sci. USA. 2009;106:13481–13486. doi: 10.1073/pnas.0902132106. PubMed DOI PMC
Díaz-Díaz C.J., Ronnekleiv-Kelly S.M., Nukaya M., Geiger P.G., Balbo S., Dator R., Megna B.W., Carney P.R., Bradfield C.A., Kennedy G.D. The aryl hydrocarbon receptor is a repressor of inflammation-associated colorectal tumorigenesis in mouse. Ann. Surg. 2016;264:429–436. doi: 10.1097/SLA.0000000000001874. PubMed DOI PMC
Han H., Davidson L.A., Hensel M., Yoon G., Landrock K., Allred C., Jayaraman A., Ivanov I., Safe S.H., Chapkin R.S. Loss of aryl hydrocarbon receptor promotes colon tumorigenesis in Apc(S580/+); Kras(G12D/+) mice. Mol. Cancer Res. 2021;19:771–783. doi: 10.1158/1541-7786.MCR-20-0789. PubMed DOI PMC
Ikuta T., Kurosumi M., Yatsuoka T., Nishimura Y. Tissue distribution of aryl hydrocarbon receptor in the intestine: Implication of putative roles in tumor suppression. Exp. Cell Res. 2016;343:126–134. doi: 10.1016/j.yexcr.2016.03.012. PubMed DOI
Venkateswaran N., Lafita-Navarro M.C., Hao Y.-H., Kilgore J.A., Perez-Castro L., Braverman J., Borenstein-Auerbach N., Kim M., Lesner N.P., Mishra P., et al. MYC promotes tryptophan uptake and metabolism by the kynurenine pathway in colon cancer. Genes Dev. 2019;33:1236–1251. doi: 10.1101/gad.327056.119. PubMed DOI PMC
Yin J., Sheng B., Pu A., Han B., Yang K., Wang Q., Sun L., Yang H. Keratinocyte growth factor regulation of aryl hydrocarbon receptor activation in colorectal cancer cells. Dig. Dis. Sci. 2016;61:444–452. doi: 10.1007/s10620-015-3908-1. PubMed DOI
Megna B.W., Carney P.R., Depke M.G., Nukaya M., McNally J., Larsen L., Rosengren R.J., Kennedy G.D. The aryl hydrocarbon receptor as an antitumor target of synthetic curcuminoids in colorectal cancer. J. Surg. Res. 2017;213:16–24. doi: 10.1016/j.jss.2017.02.010. PubMed DOI PMC
Ronnekleiv-Kelly S.M., Nukaya M., Díaz-Díaz C.J., Megna B.W., Carney P.R., Geiger P.G., Kennedy G.D. Aryl hydrocarbon receptor-dependent apoptotic cell death induced by the flavonoid chrysin in human colorectal cancer cells. Cancer Lett. 2016;370:91–99. doi: 10.1016/j.canlet.2015.10.014. PubMed DOI PMC
Garcia-Villatoro E.L., DeLuca J.A.A., Callaway E.S., Allred K.F., Davidson L.A., Hensel M.E., Menon R., Ivanov I., Safe S.H., Jayaraman A., et al. Effects of high-fat diet and intestinal aryl hydrocarbon receptor deletion on colon carcinogenesis. Am. J. Physiol. Gastrointest. Liver Physiol. 2020;318:G451–G463. doi: 10.1152/ajpgi.00268.2019. PubMed DOI PMC
Litzenburger U.M., Opitz C.A., Sahm F., Rauschenbach K.J., Trump S., Winter M., Ott M., Ochs K., Lutz C., Liu X., et al. Constitutive IDO expression in human cancer is sustained by an autocrine signaling loop involving IL-6, STAT3 and the AHR. Oncotarget. 2014;5:1038–1051. doi: 10.18632/oncotarget.1637. PubMed DOI PMC
Xie G., Peng Z., Raufman J.-P. Src-mediated aryl hydrocarbon and epidermal growth factor receptor cross talk stimulates colon cancer cell proliferation. Am. J. Physiol. Gastrointest. Liver Physiol. 2012;302:G1006–G1015. doi: 10.1152/ajpgi.00427.2011. PubMed DOI PMC
Ge N.-L., Elferink C.J. A direct interaction between the aryl hydrocarbon receptor and retinoblastoma protein. J. Biol. Chem. 1998;273:22708–22713. doi: 10.1074/jbc.273.35.22708. PubMed DOI
Kolluri S.K., Weiss C., Koff A., Gottlicher M. p27(Kip1) induction and inhibition of proliferation by the intracellular Ah receptor in developing thymus and hepatoma cells. Genes Dev. 1999;13:1742–1753. doi: 10.1101/gad.13.13.1742. PubMed DOI PMC
Marlowe J.L., Knudsen E.S., Schwemberger S., Puga A. The aryl hydrocarbon receptor displaces p300 from E2F-dependent promoters and represses S phase-specific gene expression. J. Biol. Chem. 2004;279:29013–29022. doi: 10.1074/jbc.M404315200. PubMed DOI
Marlowe J.L., Puga A. Aryl hydrocarbon receptor, cell cycle regulation, toxicity, and tumorigenesis. J. Cell. Biochem. 2005;96:1174–1184. doi: 10.1002/jcb.20656. PubMed DOI
John K., Lahoti T.S., Wagner K., Hughes J.M., Perdew G.H. The Ah receptor regulates growth factor expression in head and neck squamous cell carcinoma cell lines: Growth factor targets of AhR. Mol. Carcinog. 2014;53:765–776. doi: 10.1002/mc.22032. PubMed DOI PMC
Kim D.W., Gazourian L., Quadri S.A., Romieu-Mourez R., Sherr D.H., Sonenshein G.E. The RelA NF-kappaB subunit and the aryl hydrocarbon receptor (AhR) cooperate to transactivate the c-myc promoter in mammary cells. Oncogene. 2000;19:5498–5506. doi: 10.1038/sj.onc.1203945. PubMed DOI
Al-Dhfyan A., Alhoshani A., Korashy H.M. Aryl hydrocarbon receptor/cytochrome P450 1A1 pathway mediates breast cancer stem cells expansion through PTEN inhibition and β-Catenin and Akt activation. Mol. Cancer. 2017;16:14. doi: 10.1186/s12943-016-0570-y. PubMed DOI PMC
Moreno-Marín N., Merino J.M., Alvarez-Barrientos A., Patel D.P., Takahashi S., González-Sancho J.M., Gandolfo P., Rios R.M., Muñoz A., Gonzalez F.J., et al. Aryl hydrocarbon receptor promotes liver polyploidization and inhibits PI3K, ERK, and Wnt/β-catenin signaling. iScience. 2018;4:44–63. doi: 10.1016/j.isci.2018.05.006. PubMed DOI PMC
Wang C., Xu C.-X., Bu Y., Bottum K.M., Tischkau S.A. Beta-naphthoflavone (DB06732) mediates estrogen receptor-positive breast cancer cell cycle arrest through AhR-dependent regulation of PI3K/AKT and MAPK/ERK signaling. Carcinogenesis. 2014;35:703–713. doi: 10.1093/carcin/bgt356. PubMed DOI PMC
Lafita-Navarro M.C., Perez-Castro L., Zacharias L.G., Barnes S., DeBerardinis R.J., Conacci-Sorrell M. The transcription factors aryl hydrocarbon receptor and MYC cooperate in the regulation of cellular metabolism. J. Biol. Chem. 2020;295:12398–12407. doi: 10.1074/jbc.AC120.014189. PubMed DOI PMC
Nault R., Fader K.A., Ammendolia D.A., Dornbos P., Potter D., Sharratt B., Kumagai K., Harkema J.R., Lunt S.Y., Matthews J., et al. Dose-dependent metabolic reprogramming and differential gene expression in TCDD-elicited hepatic fibrosis. Toxicol. Sci. 2016;154:253–266. doi: 10.1093/toxsci/kfw163. PubMed DOI PMC
Nault R., Fader K.A., Lydic T.A., Zacharewski T.R. Lipidomic evaluation of aryl hydrocarbon receptor-mediated hepatic steatosis in male and female mice elicited by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Chem. Res. Toxicol. 2017;30:1060–1075. doi: 10.1021/acs.chemrestox.6b00430. PubMed DOI PMC
Sato S., Shirakawa H., Tomita S., Ohsaki Y., Haketa K., Tooi O., Santo N., Tohkin M., Furukawa Y., Gonzalez F.J., et al. Low-dose dioxins alter gene expression related to cholesterol biosynthesis, lipogenesis, and glucose metabolism through the aryl hydrocarbon receptor-mediated pathway in mouse liver. Toxicol. Appl. Pharmacol. 2008;229:10–19. doi: 10.1016/j.taap.2007.12.029. PubMed DOI
Angrish M.M., Jones A.D., Harkema J.R., Zacharewski T.R. Aryl hydrocarbon receptor–mediated induction of stearoyl-CoA desaturase 1 alters hepatic fatty acid composition in TCDD-elicited steatosis. Toxicol. Sci. 2011;124:299–310. doi: 10.1093/toxsci/kfr226. PubMed DOI PMC
Lee J.H., Wada T., Febbraio M., He J., Matsubara T., Lee M.J., Gonzalez F.J., Xie W. A novel role for the dioxin receptor in fatty acid metabolism and hepatic steatosis. Gastroenterology. 2010;139:653–663. doi: 10.1053/j.gastro.2010.03.033. PubMed DOI PMC
Xu C.-X., Wang C., Zhang Z.-M., Jaeger C.D., Krager S.L., Bottum K.M., Liu J., Liao D.-F., Tischkau S.A. Aryl hydrocarbon receptor deficiency protects mice from diet-induced adiposity and metabolic disorders through increased energy expenditure. Int. J. Obes. 2015;39:1300–1309. doi: 10.1038/ijo.2015.63. PubMed DOI PMC
Hofmanová J., Slavík J., Ciganek M., Ovesná P., Tylichová Z., Karasová M., Zapletal O., Straková N., Procházková J., Bouchal J., et al. Complex aterations of fatty acid metabolism and phospholipidome uncovered in isolated colon cancer epithelial cells. Int. J. Mol. Sci. 2021;22:6650. doi: 10.3390/ijms22136650. PubMed DOI PMC
Procházková J., Slavík J., Bouchal J., Levková M., Hušková Z., Ehrmann J., Ovesná P., Kolář Z., Skalický P., Straková N., et al. Specific alterations of sphingolipid metabolism identified in EpCAM-positive cells isolated from human colon tumors. Biochim. Biophys. Acta. 2020;1865:158742. doi: 10.1016/j.bbalip.2020.158742. PubMed DOI
Vyhlídalová B., Krasulová K., Pečínková P., Marcalíková A., Vrzal R., Zemánková L., Vančo J., Trávníček Z., Vondráček J., Karasová M., et al. Gut microbial catabolites of tryptophan are ligands and agonists of the aryl hydrocarbon receptor: A detailed characterization. Int. J. Mol. Sci. 2020;21:2614. doi: 10.3390/ijms21072614. PubMed DOI PMC
Lee C., Kim J.S., Waldman T. PTEN gene targeting reveals a radiation-induced size checkpoint in human cancer cells. Cancer Res. 2004;64:6906–6914. doi: 10.1158/0008-5472.CAN-04-1767. PubMed DOI PMC
Bray M.-A., Singh S., Han H., Davis C.T., Borgeson B., Hartland C., Kost-Alimova M., Gustafsdottir S.M., Gibson C.C., Carpenter A.E. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. Nat. Protoc. 2016;11:1757–1774. doi: 10.1038/nprot.2016.105. PubMed DOI PMC
Veeman M.T., Slusarski D.C., Kaykas A., Louie S.H., Moon R.T. Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr. Biol. 2003;13:680–685. doi: 10.1016/S0960-9822(03)00240-9. PubMed DOI
Schmittgen T.D., Livak K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008;3:1101–1108. doi: 10.1038/nprot.2008.73. PubMed DOI
Tylichová Z., Slavík J., Ciganek M., Ovesná P., Krčmář P., Straková N., Machala M., Kozubík A., Hofmanová J., Vondráček J. Butyrate and docosahexaenoic acid interact in alterations of specific lipid classes in differentiating colon cancer cells. J. Cell Biochem. 2018;119:4664–4679. doi: 10.1002/jcb.26641. PubMed DOI
Kosti I., Jain N., Aran D., Butte A.J., Sirota M. Cross-tissue Analysis of Gene and Protein Expression in Normal and Cancer Tissues. Sci. Rep. 2016;6:24799. doi: 10.1038/srep24799. PubMed DOI PMC
Koundouros N., Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer. 2020;122:4–22. doi: 10.1038/s41416-019-0650-z. PubMed DOI PMC
Cross D.A., Alessi D.R., Cohen P., Andjelkovich M., Hemmings B.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995;378:785–789. doi: 10.1038/378785a0. PubMed DOI
Feng S., Cao Z., Wang X. Role of aryl hydrocarbon receptor in cancer. Biochim. Biophys. Acta. 2013;1836:197–210. doi: 10.1016/j.bbcan.2013.05.001. PubMed DOI
Huang Y.H., Cao Y.F., Jiang Z.Y., Zhang S., Gao F. Th22 cell accumulation is associated with colorectal cancer development. World J. Gastroenterol. 2015;21:4216–4224. doi: 10.3748/wjg.v21.i14.4216. PubMed DOI PMC
Céspedes M.V., Espina C., García-Cabezas M.A., Trias M., Boluda A., Gómez del Pulgar M.T., Sancho F.J., Nistal M., Lacal J.C., Mangues R. Orthotopic microinjection of human colon cancer cells in nude mice induces tumor foci in all clinically relevant metastatic sites. Am. J. Pathol. 2007;170:1077–1085. doi: 10.2353/ajpath.2007.060773. PubMed DOI PMC
El-Brolosy M.A., Stainier D.Y.R. Genetic compensation: A phenomenon in search of mechanisms. PLoS Genet. 2017;13:e1006780. doi: 10.1371/journal.pgen.1006780. PubMed DOI PMC
Oberg M., Bergander L., Hakansson H., Rannug U., Rannug A. Identification of the tryptophan photoproduct 6-formylindolo[3,2-b]carbazole, in cell culture medium, as a factor that controls the background aryl hydrocarbon receptor activity. Toxicol. Sci. 2005;85:935–943. doi: 10.1093/toxsci/kfi154. PubMed DOI
Rannug A. How the AHR Became Important in Intestinal Homeostasis—A Diurnal FICZ/AHR/CYP1A1 Feedback Controls Both Immunity and Immunopathology. Int. J. Mol. Sci. 2020;21:5681. doi: 10.3390/ijms21165681. PubMed DOI PMC
Abdelrahim M., Smith R., 3rd, Safe S. Aryl hydrocarbon receptor gene silencing with small inhibitory RNA differentially modulates Ah-responsiveness in MCF-7 and HepG2 cancer cells. Mol. Pharmacol. 2003;63:1373–1381. doi: 10.1124/mol.63.6.1373. PubMed DOI
Ma Q., Whitlock J.P., Jr. The aromatic hydrocarbon receptor modulates the Hepa 1c1c7 cell cycle and differentiated state independently of dioxin. Mol. Cell Biol. 1996;16:2144–2150. doi: 10.1128/MCB.16.5.2144. PubMed DOI PMC
Elferink C.J. Aryl hydrocarbon receptor-mediated cell cycle control. Prog. Cell Cycle Res. 2003;5:261–267. PubMed
Elferink C.J., Ge N.L., Levine A. Maximal aryl hydrocarbon receptor activity depends on an interaction with the retinoblastoma protein. Mol. Pharmacol. 2001;59:664–673. doi: 10.1124/mol.59.4.664. PubMed DOI
Elson D.J., Nguyen B.D., Wood R., Zhang Y., Puig-Sanvicens V., Kolluri S.K. The cyclin-dependent kinase inhibitor p27(Kip1) interacts with the aryl hydrocarbon receptor and negatively regulates its transcriptional activity. FEBS Lett. 2022;596:2056–2071. doi: 10.1002/1873-3468.14434. PubMed DOI
Shiizaki K., Kido K., Mizuta Y. Insight into the relationship between aryl-hydrocarbon receptor and β-catenin in human colon cancer cells. PLoS ONE. 2019;14:e0224613. doi: 10.1371/journal.pone.0224613. PubMed DOI PMC
Moyer B.J., Rojas I.Y., Kerley-Hamilton J.S., Hazlett H.F., Nemani K.V., Trask H.W., West R.J., Lupien L.E., Collins A.J., Ringelberg C.S., et al. Inhibition of the aryl hydrocarbon receptor prevents Western diet-induced obesity. Model for AHR activation by kynurenine via oxidized-LDL, TLR2/4, TGFβ, and IDO1. Toxicol. Appl. Pharmacol. 2016;300:13–24. doi: 10.1016/j.taap.2016.03.011. PubMed DOI PMC
Moyer B.J., Rojas I.Y., Kerley-Hamilton J.S., Nemani K.V., Trask H.W., Ringelberg C.S., Gimi B., Demidenko E., Tomlinson C.R. Obesity and fatty liver are prevented by inhibition of the aryl hydrocarbon receptor in both female and male mice. Nutr. Res. 2017;44:38–50. doi: 10.1016/j.nutres.2017.06.002. PubMed DOI PMC
Hwang H.J., Dornbos P., Steidemann M., Dunivin T.K., Rizzo M., LaPres J.J. Mitochondrial-targeted aryl hydrocarbon receptor and the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin on cellular respiration and the mitochondrial proteome. Toxicol. Appl. Pharmacol. 2016;304:121–132. doi: 10.1016/j.taap.2016.04.005. PubMed DOI PMC
Röhrig F., Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nat. Rev. Cancer. 2016;16:732–749. doi: 10.1038/nrc.2016.89. PubMed DOI
Santos C.R., Schulze A. Lipid metabolism in cancer: Lipid metabolism in cancer. FEBS J. 2012;279:2610–2623. doi: 10.1111/j.1742-4658.2012.08644.x. PubMed DOI
Else P.L. The highly unnatural fatty acid profile of cells in culture. Prog. Lipid. Res. 2020;77:101017. doi: 10.1016/j.plipres.2019.101017. PubMed DOI
Angrish M.M., Dominici C.Y., Zacharewski T.R. TCDD-elicited effects on liver, serum, and adipose lipid composition in C57BL/6 Mice. Toxicol. Sci. 2013;131:108–115. doi: 10.1093/toxsci/kfs277. PubMed DOI PMC
Kania-Korwel I., Wu X., Wang K., Lehmler H.-J. Identification of lipidomic markers of chronic 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) exposure in the male rat liver. Toxicology. 2017;390:124–134. doi: 10.1016/j.tox.2017.09.005. PubMed DOI PMC
Li F., Xiang B., Jin Y., Li C., Ren S., Wu Y., Li J., Luo Q. Hepatotoxic effects of inhalation exposure to polycyclic aromatic hydrocarbons on lipid metabolism of C57BL/6 mice. Environ. Int. 2020;134:105000. doi: 10.1016/j.envint.2019.105000. PubMed DOI
Liu Q., Zhang L., Allman E.L., Hubbard T.D., Murray I.A., Hao F., Tian Y., Gui W., Nichols R.G., Smith P.B., et al. The aryl hydrocarbon receptor activates ceramide biosynthesis in mice contributing to hepatic lipogenesis. Toxicology. 2021;458:152831. doi: 10.1016/j.tox.2021.152831. PubMed DOI PMC
Zaytseva Y.Y., Rychahou P.G., Gulhati P., Elliott V.A., Mustain W.C., O’Connor K., Morris A.J., Sunkara M., Weiss H.L., Lee E.Y., et al. Inhibition of fatty acid synthase attenuates CD44-associated signaling and reduces metastasis in colorectal cancer. Cancer Res. 2012;72:1504–1517. doi: 10.1158/0008-5472.CAN-11-4057. PubMed DOI PMC
Mason P., Liang B., Li L., Fremgen T., Murphy E., Quinn A., Madden S.L., Biemann H.-P., Wang B., Cohen A., et al. SCD1 inhibition causes cancer cell death by depleting mono-unsaturated fatty acids. PLoS ONE. 2012;7:e33823. doi: 10.1371/journal.pone.0033823. PubMed DOI PMC
Sanchez-Martinez R., Cruz-Gil S., Gomez de Cedron M., Alvarez-Fernandez M., Vargas T., Molina S., Garcia B., Herranz J., Moreno-Rubio J., Reglero G., et al. A link between lipid metabolism and epithelial-mesenchymal transition provides a target for colon cancer therapy. Oncotarget. 2015;6:38719–38736. doi: 10.18632/oncotarget.5340. PubMed DOI PMC
Cruz-Gil S., Sanchez-Martinez R., Gomez de Cedron M., Martin-Hernandez R., Vargas T., Molina S., Herranz J., Davalos A., Reglero G., Ramirez de Molina A. Targeting the lipid metabolic axis ACSL/SCD in colorectal cancer progression by therapeutic miRNAs: miR-19b-1 role. J. Lipid Res. 2018;59:14–24. doi: 10.1194/jlr.M076752. PubMed DOI PMC
Taniue K., Kurimoto A., Sugimasa H., Nasu E., Takeda Y., Iwasaki K., Nagashima T., Okada-Hatakeyama M., Oyama M., Kozuka-Hata H., et al. Long noncoding RNA UPAT promotes colon tumorigenesis by inhibiting degradation of UHRF1. Proc. Natl. Acad. Sci. USA. 2016;113:1273–1278. doi: 10.1073/pnas.1500992113. PubMed DOI PMC
Hoxhaj G., Manning B.D. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer. 2020;20:74–88. doi: 10.1038/s41568-019-0216-7. PubMed DOI PMC
Porstmann T., Santos C.R., Griffiths B., Cully M., Wu M., Leevers S., Griffiths J.R., Chung Y.-L., Schulze A. SREBP Activity Is Regulated by mTORC1 and Contributes to Akt-Dependent Cell Growth. Cell Metabol. 2008;8:224–236. doi: 10.1016/j.cmet.2008.07.007. PubMed DOI PMC
Wu R., Zhang L., Hoagland M.S., Swanson H.I. Lack of the aryl hydrocarbon receptor leads to impaired activation of AKT/Protein Kinase B and enhanced sensitivity to apoptosis induced via the intrinsic pathway. J. Pharmacol. Exp. Therap. 2006;320:448–457. doi: 10.1124/jpet.106.111773. PubMed DOI