Inhibition of Aryl Hydrocarbon Receptor (AhR) Expression Disrupts Cell Proliferation and Alters Energy Metabolism and Fatty Acid Synthesis in Colon Cancer Cells

. 2022 Aug 31 ; 14 (17) : . [epub] 20220831

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36077780

Grantová podpora
19-00236S Czech Science Foundation
NU21-03-00421 Ministry of Health
BBMRI-CZ No. CZ.02.1.01/0.0/0.0/16_013/0001674 European Regional Development Fund
RVO: 68081707 Czech Academy of Sciences
RO0520 Ministry of Agriculture
DRO-FNOL00098892 Ministry of Health

The aryl hydrocarbon receptor (AhR) plays a wide range of physiological roles in cellular processes such as proliferation, migration or control of immune responses. Several studies have also indicated that AhR might contribute to the regulation of energy balance or cellular metabolism. We observed that the AhR is upregulated in tumor epithelial cells derived from colon cancer patients. Using wild-type and the corresponding AhR knockout (AhR KO) variants of human colon cancer cell lines HCT116 and HT-29, we analyzed possible role(s) of the AhR in cell proliferation and metabolism, with a focus on regulation of the synthesis of fatty acids (FAs). We observed a decreased proliferation rate in the AhR KO cells, which was accompanied with altered cell cycle progression, as well as a decreased ATP production. We also found reduced mRNA levels of key enzymes of the FA biosynthetic pathway in AhR KO colon cancer cells, in particular of stearoyl-CoA desaturase 1 (SCD1). The loss of AhR was also associated with reduced expression and/or activity of components of the PI3K/Akt pathway, which controls lipid metabolism, and other lipogenic transcriptional regulators, such as sterol regulatory element binding transcription factor 1 (SREBP1). Together, our data indicate that disruption of AhR activity in colon tumor cells may, likely in a cell-specific manner, limit their proliferation, which could be linked with a suppressive effect on their endogenous FA metabolism. More attention should be paid to potential mechanistic links between overexpressed AhR and colon tumor cell metabolism.

Zobrazit více v PubMed

Siegel R.L., Miller K.D., Goding Sauer A., Fedewa S.A., Butterly L.F., Anderson J.C., Cercek A., Smith R.A., Jemal A. Colorectal cancer statistics, 2020. CA Cancer J. Clin. 2020;70:145–164. doi: 10.3322/caac.21601. PubMed DOI

Keum N., Giovannucci E. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol. 2019;16:713–732. doi: 10.1038/s41575-019-0189-8. PubMed DOI

Peck B., Schulze A. Lipid metabolism at the nexus of diet and tumor microenvironment. Trends Cancer. 2019;5:693–703. doi: 10.1016/j.trecan.2019.09.007. PubMed DOI

Vander Heiden M.G. Targeting cancer metabolism: A therapeutic window opens. Nat. Reviews Drug Discov. 2011;10:671–684. doi: 10.1038/nrd3504. PubMed DOI

Vander Heiden M.G., DeBerardinis R.J. Understanding the intersections between metabolism and cancer biology. Cell. 2017;168:657–669. doi: 10.1016/j.cell.2016.12.039. PubMed DOI PMC

Zaytseva Y. Lipid metabolism as a targetable metabolic vulnerability in colorectal cancer. Cancers. 2021;13:301. doi: 10.3390/cancers13020301. PubMed DOI PMC

Murray I.A., Patterson A.D., Perdew G.H. Aryl hydrocarbon receptor ligands in cancer: Friend and foe. Nat. Rev. Cancer. 2014;14:801–814. doi: 10.1038/nrc3846. PubMed DOI PMC

Opitz C.A., Litzenburger U.M., Sahm F., Ott M., Tritschler I., Trump S., Schumacher T., Jestaedt L., Schrenk D., Weller M., et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 2011;478:197–203. doi: 10.1038/nature10491. PubMed DOI

Safe S., Jayaraman A., Chapkin R.S. Ah receptor ligands and their impacts on gut resilience: Structure–activity effects. Crit. Rev. Toxicol. 2020;50:463–473. doi: 10.1080/10408444.2020.1773759. PubMed DOI PMC

Andrysík Z., Vondráček J., Machala M., Krčmář P., Švihálková-Šindlerová L., Kranz A., Weiss C., Faust D., Kozubík A., Dietrich C. The aryl hydrocarbon receptor-dependent deregulation of cell cycle control induced by polycyclic aromatic hydrocarbons in rat liver epithelial cells. Mutat. Res. 2007;615:87–97. doi: 10.1016/j.mrfmmm.2006.10.004. PubMed DOI

Dietrich C. The AHR in the control of cell cycle and apoptosis. In: Pohjanvirta R., editor. The AH Receptor in Biology and Toxicology. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2011. pp. 467–483.

Dietrich C., Kaina B. The aryl hydrocarbon receptor (AhR) in the regulation of cell-cell contact and tumor growth. Carcinogenesis. 2010;31:1319–1328. doi: 10.1093/carcin/bgq028. PubMed DOI PMC

Goode G., Pratap S., Eltom S.E. Depletion of the aryl hydrocarbon receptor in MDA-MB-231 human breast cancer cells altered the expression of genes in key regulatory pathways of cancer. PLoS ONE. 2014;9:e100103. doi: 10.1371/journal.pone.0100103. PubMed DOI PMC

Goode G.D., Ballard B.R., Manning H.C., Freeman M.L., Kang Y., Eltom S.E. Knockdown of aberrantly upregulated aryl hydrocarbon receptor reduces tumor growth and metastasis of MDA-MB-231 human breast cancer cell line: AhR knockdown and breast cancer growth and metastasis. Int. J. Cancer. 2013;133:2769–2780. doi: 10.1002/ijc.28297. PubMed DOI PMC

Gutiérrez-Vázquez C., Quintana F.J. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity. 2018;48:19–33. doi: 10.1016/j.immuni.2017.12.012. PubMed DOI PMC

Larigot L., Juricek L., Dairou J., Coumoul X. AhR signaling pathways and regulatory functions. Biochim. Open. 2018;7:1–9. doi: 10.1016/j.biopen.2018.05.001. PubMed DOI PMC

Gonzalez F.J., Fernandez-Salguero P. The aryl hydrocarbon receptor: Studies using the AHR-null mice. Drug Metab. Dispos. 1998;26:1194–1198. PubMed

Schmidt J.V., Su G.H., Reddy J.K., Simon M.C., Bradfield C.A. Characterization of a murine Ahr null allele: Involvement of the Ah receptor in hepatic growth and development. Proc. Natl. Acad. Sci. USA. 1996;93:6731–6736. doi: 10.1073/pnas.93.13.6731. PubMed DOI PMC

Safe S., Lee S.O., Jin U.H. Role of the aryl hydrocarbon receptor in carcinogenesis and potential as a drug target. Toxicol. Sci. 2013;135:1–16. doi: 10.1093/toxsci/kft128. PubMed DOI PMC

Kawajiri K., Kobayashi Y., Ohtake F., Ikuta T., Matsushima Y., Mimura J., Pettersson S., Pollenz R.S., Sakaki T., Hirokawa T., et al. Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in ApcMin/+ mice with natural ligands. Proc. Natl. Acad. Sci. USA. 2009;106:13481–13486. doi: 10.1073/pnas.0902132106. PubMed DOI PMC

Díaz-Díaz C.J., Ronnekleiv-Kelly S.M., Nukaya M., Geiger P.G., Balbo S., Dator R., Megna B.W., Carney P.R., Bradfield C.A., Kennedy G.D. The aryl hydrocarbon receptor is a repressor of inflammation-associated colorectal tumorigenesis in mouse. Ann. Surg. 2016;264:429–436. doi: 10.1097/SLA.0000000000001874. PubMed DOI PMC

Han H., Davidson L.A., Hensel M., Yoon G., Landrock K., Allred C., Jayaraman A., Ivanov I., Safe S.H., Chapkin R.S. Loss of aryl hydrocarbon receptor promotes colon tumorigenesis in Apc(S580/+); Kras(G12D/+) mice. Mol. Cancer Res. 2021;19:771–783. doi: 10.1158/1541-7786.MCR-20-0789. PubMed DOI PMC

Ikuta T., Kurosumi M., Yatsuoka T., Nishimura Y. Tissue distribution of aryl hydrocarbon receptor in the intestine: Implication of putative roles in tumor suppression. Exp. Cell Res. 2016;343:126–134. doi: 10.1016/j.yexcr.2016.03.012. PubMed DOI

Venkateswaran N., Lafita-Navarro M.C., Hao Y.-H., Kilgore J.A., Perez-Castro L., Braverman J., Borenstein-Auerbach N., Kim M., Lesner N.P., Mishra P., et al. MYC promotes tryptophan uptake and metabolism by the kynurenine pathway in colon cancer. Genes Dev. 2019;33:1236–1251. doi: 10.1101/gad.327056.119. PubMed DOI PMC

Yin J., Sheng B., Pu A., Han B., Yang K., Wang Q., Sun L., Yang H. Keratinocyte growth factor regulation of aryl hydrocarbon receptor activation in colorectal cancer cells. Dig. Dis. Sci. 2016;61:444–452. doi: 10.1007/s10620-015-3908-1. PubMed DOI

Megna B.W., Carney P.R., Depke M.G., Nukaya M., McNally J., Larsen L., Rosengren R.J., Kennedy G.D. The aryl hydrocarbon receptor as an antitumor target of synthetic curcuminoids in colorectal cancer. J. Surg. Res. 2017;213:16–24. doi: 10.1016/j.jss.2017.02.010. PubMed DOI PMC

Ronnekleiv-Kelly S.M., Nukaya M., Díaz-Díaz C.J., Megna B.W., Carney P.R., Geiger P.G., Kennedy G.D. Aryl hydrocarbon receptor-dependent apoptotic cell death induced by the flavonoid chrysin in human colorectal cancer cells. Cancer Lett. 2016;370:91–99. doi: 10.1016/j.canlet.2015.10.014. PubMed DOI PMC

Garcia-Villatoro E.L., DeLuca J.A.A., Callaway E.S., Allred K.F., Davidson L.A., Hensel M.E., Menon R., Ivanov I., Safe S.H., Jayaraman A., et al. Effects of high-fat diet and intestinal aryl hydrocarbon receptor deletion on colon carcinogenesis. Am. J. Physiol. Gastrointest. Liver Physiol. 2020;318:G451–G463. doi: 10.1152/ajpgi.00268.2019. PubMed DOI PMC

Litzenburger U.M., Opitz C.A., Sahm F., Rauschenbach K.J., Trump S., Winter M., Ott M., Ochs K., Lutz C., Liu X., et al. Constitutive IDO expression in human cancer is sustained by an autocrine signaling loop involving IL-6, STAT3 and the AHR. Oncotarget. 2014;5:1038–1051. doi: 10.18632/oncotarget.1637. PubMed DOI PMC

Xie G., Peng Z., Raufman J.-P. Src-mediated aryl hydrocarbon and epidermal growth factor receptor cross talk stimulates colon cancer cell proliferation. Am. J. Physiol. Gastrointest. Liver Physiol. 2012;302:G1006–G1015. doi: 10.1152/ajpgi.00427.2011. PubMed DOI PMC

Ge N.-L., Elferink C.J. A direct interaction between the aryl hydrocarbon receptor and retinoblastoma protein. J. Biol. Chem. 1998;273:22708–22713. doi: 10.1074/jbc.273.35.22708. PubMed DOI

Kolluri S.K., Weiss C., Koff A., Gottlicher M. p27(Kip1) induction and inhibition of proliferation by the intracellular Ah receptor in developing thymus and hepatoma cells. Genes Dev. 1999;13:1742–1753. doi: 10.1101/gad.13.13.1742. PubMed DOI PMC

Marlowe J.L., Knudsen E.S., Schwemberger S., Puga A. The aryl hydrocarbon receptor displaces p300 from E2F-dependent promoters and represses S phase-specific gene expression. J. Biol. Chem. 2004;279:29013–29022. doi: 10.1074/jbc.M404315200. PubMed DOI

Marlowe J.L., Puga A. Aryl hydrocarbon receptor, cell cycle regulation, toxicity, and tumorigenesis. J. Cell. Biochem. 2005;96:1174–1184. doi: 10.1002/jcb.20656. PubMed DOI

John K., Lahoti T.S., Wagner K., Hughes J.M., Perdew G.H. The Ah receptor regulates growth factor expression in head and neck squamous cell carcinoma cell lines: Growth factor targets of AhR. Mol. Carcinog. 2014;53:765–776. doi: 10.1002/mc.22032. PubMed DOI PMC

Kim D.W., Gazourian L., Quadri S.A., Romieu-Mourez R., Sherr D.H., Sonenshein G.E. The RelA NF-kappaB subunit and the aryl hydrocarbon receptor (AhR) cooperate to transactivate the c-myc promoter in mammary cells. Oncogene. 2000;19:5498–5506. doi: 10.1038/sj.onc.1203945. PubMed DOI

Al-Dhfyan A., Alhoshani A., Korashy H.M. Aryl hydrocarbon receptor/cytochrome P450 1A1 pathway mediates breast cancer stem cells expansion through PTEN inhibition and β-Catenin and Akt activation. Mol. Cancer. 2017;16:14. doi: 10.1186/s12943-016-0570-y. PubMed DOI PMC

Moreno-Marín N., Merino J.M., Alvarez-Barrientos A., Patel D.P., Takahashi S., González-Sancho J.M., Gandolfo P., Rios R.M., Muñoz A., Gonzalez F.J., et al. Aryl hydrocarbon receptor promotes liver polyploidization and inhibits PI3K, ERK, and Wnt/β-catenin signaling. iScience. 2018;4:44–63. doi: 10.1016/j.isci.2018.05.006. PubMed DOI PMC

Wang C., Xu C.-X., Bu Y., Bottum K.M., Tischkau S.A. Beta-naphthoflavone (DB06732) mediates estrogen receptor-positive breast cancer cell cycle arrest through AhR-dependent regulation of PI3K/AKT and MAPK/ERK signaling. Carcinogenesis. 2014;35:703–713. doi: 10.1093/carcin/bgt356. PubMed DOI PMC

Lafita-Navarro M.C., Perez-Castro L., Zacharias L.G., Barnes S., DeBerardinis R.J., Conacci-Sorrell M. The transcription factors aryl hydrocarbon receptor and MYC cooperate in the regulation of cellular metabolism. J. Biol. Chem. 2020;295:12398–12407. doi: 10.1074/jbc.AC120.014189. PubMed DOI PMC

Nault R., Fader K.A., Ammendolia D.A., Dornbos P., Potter D., Sharratt B., Kumagai K., Harkema J.R., Lunt S.Y., Matthews J., et al. Dose-dependent metabolic reprogramming and differential gene expression in TCDD-elicited hepatic fibrosis. Toxicol. Sci. 2016;154:253–266. doi: 10.1093/toxsci/kfw163. PubMed DOI PMC

Nault R., Fader K.A., Lydic T.A., Zacharewski T.R. Lipidomic evaluation of aryl hydrocarbon receptor-mediated hepatic steatosis in male and female mice elicited by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Chem. Res. Toxicol. 2017;30:1060–1075. doi: 10.1021/acs.chemrestox.6b00430. PubMed DOI PMC

Sato S., Shirakawa H., Tomita S., Ohsaki Y., Haketa K., Tooi O., Santo N., Tohkin M., Furukawa Y., Gonzalez F.J., et al. Low-dose dioxins alter gene expression related to cholesterol biosynthesis, lipogenesis, and glucose metabolism through the aryl hydrocarbon receptor-mediated pathway in mouse liver. Toxicol. Appl. Pharmacol. 2008;229:10–19. doi: 10.1016/j.taap.2007.12.029. PubMed DOI

Angrish M.M., Jones A.D., Harkema J.R., Zacharewski T.R. Aryl hydrocarbon receptor–mediated induction of stearoyl-CoA desaturase 1 alters hepatic fatty acid composition in TCDD-elicited steatosis. Toxicol. Sci. 2011;124:299–310. doi: 10.1093/toxsci/kfr226. PubMed DOI PMC

Lee J.H., Wada T., Febbraio M., He J., Matsubara T., Lee M.J., Gonzalez F.J., Xie W. A novel role for the dioxin receptor in fatty acid metabolism and hepatic steatosis. Gastroenterology. 2010;139:653–663. doi: 10.1053/j.gastro.2010.03.033. PubMed DOI PMC

Xu C.-X., Wang C., Zhang Z.-M., Jaeger C.D., Krager S.L., Bottum K.M., Liu J., Liao D.-F., Tischkau S.A. Aryl hydrocarbon receptor deficiency protects mice from diet-induced adiposity and metabolic disorders through increased energy expenditure. Int. J. Obes. 2015;39:1300–1309. doi: 10.1038/ijo.2015.63. PubMed DOI PMC

Hofmanová J., Slavík J., Ciganek M., Ovesná P., Tylichová Z., Karasová M., Zapletal O., Straková N., Procházková J., Bouchal J., et al. Complex aterations of fatty acid metabolism and phospholipidome uncovered in isolated colon cancer epithelial cells. Int. J. Mol. Sci. 2021;22:6650. doi: 10.3390/ijms22136650. PubMed DOI PMC

Procházková J., Slavík J., Bouchal J., Levková M., Hušková Z., Ehrmann J., Ovesná P., Kolář Z., Skalický P., Straková N., et al. Specific alterations of sphingolipid metabolism identified in EpCAM-positive cells isolated from human colon tumors. Biochim. Biophys. Acta. 2020;1865:158742. doi: 10.1016/j.bbalip.2020.158742. PubMed DOI

Vyhlídalová B., Krasulová K., Pečínková P., Marcalíková A., Vrzal R., Zemánková L., Vančo J., Trávníček Z., Vondráček J., Karasová M., et al. Gut microbial catabolites of tryptophan are ligands and agonists of the aryl hydrocarbon receptor: A detailed characterization. Int. J. Mol. Sci. 2020;21:2614. doi: 10.3390/ijms21072614. PubMed DOI PMC

Lee C., Kim J.S., Waldman T. PTEN gene targeting reveals a radiation-induced size checkpoint in human cancer cells. Cancer Res. 2004;64:6906–6914. doi: 10.1158/0008-5472.CAN-04-1767. PubMed DOI PMC

Bray M.-A., Singh S., Han H., Davis C.T., Borgeson B., Hartland C., Kost-Alimova M., Gustafsdottir S.M., Gibson C.C., Carpenter A.E. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. Nat. Protoc. 2016;11:1757–1774. doi: 10.1038/nprot.2016.105. PubMed DOI PMC

Veeman M.T., Slusarski D.C., Kaykas A., Louie S.H., Moon R.T. Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr. Biol. 2003;13:680–685. doi: 10.1016/S0960-9822(03)00240-9. PubMed DOI

Schmittgen T.D., Livak K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008;3:1101–1108. doi: 10.1038/nprot.2008.73. PubMed DOI

Tylichová Z., Slavík J., Ciganek M., Ovesná P., Krčmář P., Straková N., Machala M., Kozubík A., Hofmanová J., Vondráček J. Butyrate and docosahexaenoic acid interact in alterations of specific lipid classes in differentiating colon cancer cells. J. Cell Biochem. 2018;119:4664–4679. doi: 10.1002/jcb.26641. PubMed DOI

Kosti I., Jain N., Aran D., Butte A.J., Sirota M. Cross-tissue Analysis of Gene and Protein Expression in Normal and Cancer Tissues. Sci. Rep. 2016;6:24799. doi: 10.1038/srep24799. PubMed DOI PMC

Koundouros N., Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer. 2020;122:4–22. doi: 10.1038/s41416-019-0650-z. PubMed DOI PMC

Cross D.A., Alessi D.R., Cohen P., Andjelkovich M., Hemmings B.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995;378:785–789. doi: 10.1038/378785a0. PubMed DOI

Feng S., Cao Z., Wang X. Role of aryl hydrocarbon receptor in cancer. Biochim. Biophys. Acta. 2013;1836:197–210. doi: 10.1016/j.bbcan.2013.05.001. PubMed DOI

Huang Y.H., Cao Y.F., Jiang Z.Y., Zhang S., Gao F. Th22 cell accumulation is associated with colorectal cancer development. World J. Gastroenterol. 2015;21:4216–4224. doi: 10.3748/wjg.v21.i14.4216. PubMed DOI PMC

Céspedes M.V., Espina C., García-Cabezas M.A., Trias M., Boluda A., Gómez del Pulgar M.T., Sancho F.J., Nistal M., Lacal J.C., Mangues R. Orthotopic microinjection of human colon cancer cells in nude mice induces tumor foci in all clinically relevant metastatic sites. Am. J. Pathol. 2007;170:1077–1085. doi: 10.2353/ajpath.2007.060773. PubMed DOI PMC

El-Brolosy M.A., Stainier D.Y.R. Genetic compensation: A phenomenon in search of mechanisms. PLoS Genet. 2017;13:e1006780. doi: 10.1371/journal.pgen.1006780. PubMed DOI PMC

Oberg M., Bergander L., Hakansson H., Rannug U., Rannug A. Identification of the tryptophan photoproduct 6-formylindolo[3,2-b]carbazole, in cell culture medium, as a factor that controls the background aryl hydrocarbon receptor activity. Toxicol. Sci. 2005;85:935–943. doi: 10.1093/toxsci/kfi154. PubMed DOI

Rannug A. How the AHR Became Important in Intestinal Homeostasis—A Diurnal FICZ/AHR/CYP1A1 Feedback Controls Both Immunity and Immunopathology. Int. J. Mol. Sci. 2020;21:5681. doi: 10.3390/ijms21165681. PubMed DOI PMC

Abdelrahim M., Smith R., 3rd, Safe S. Aryl hydrocarbon receptor gene silencing with small inhibitory RNA differentially modulates Ah-responsiveness in MCF-7 and HepG2 cancer cells. Mol. Pharmacol. 2003;63:1373–1381. doi: 10.1124/mol.63.6.1373. PubMed DOI

Ma Q., Whitlock J.P., Jr. The aromatic hydrocarbon receptor modulates the Hepa 1c1c7 cell cycle and differentiated state independently of dioxin. Mol. Cell Biol. 1996;16:2144–2150. doi: 10.1128/MCB.16.5.2144. PubMed DOI PMC

Elferink C.J. Aryl hydrocarbon receptor-mediated cell cycle control. Prog. Cell Cycle Res. 2003;5:261–267. PubMed

Elferink C.J., Ge N.L., Levine A. Maximal aryl hydrocarbon receptor activity depends on an interaction with the retinoblastoma protein. Mol. Pharmacol. 2001;59:664–673. doi: 10.1124/mol.59.4.664. PubMed DOI

Elson D.J., Nguyen B.D., Wood R., Zhang Y., Puig-Sanvicens V., Kolluri S.K. The cyclin-dependent kinase inhibitor p27(Kip1) interacts with the aryl hydrocarbon receptor and negatively regulates its transcriptional activity. FEBS Lett. 2022;596:2056–2071. doi: 10.1002/1873-3468.14434. PubMed DOI

Shiizaki K., Kido K., Mizuta Y. Insight into the relationship between aryl-hydrocarbon receptor and β-catenin in human colon cancer cells. PLoS ONE. 2019;14:e0224613. doi: 10.1371/journal.pone.0224613. PubMed DOI PMC

Moyer B.J., Rojas I.Y., Kerley-Hamilton J.S., Hazlett H.F., Nemani K.V., Trask H.W., West R.J., Lupien L.E., Collins A.J., Ringelberg C.S., et al. Inhibition of the aryl hydrocarbon receptor prevents Western diet-induced obesity. Model for AHR activation by kynurenine via oxidized-LDL, TLR2/4, TGFβ, and IDO1. Toxicol. Appl. Pharmacol. 2016;300:13–24. doi: 10.1016/j.taap.2016.03.011. PubMed DOI PMC

Moyer B.J., Rojas I.Y., Kerley-Hamilton J.S., Nemani K.V., Trask H.W., Ringelberg C.S., Gimi B., Demidenko E., Tomlinson C.R. Obesity and fatty liver are prevented by inhibition of the aryl hydrocarbon receptor in both female and male mice. Nutr. Res. 2017;44:38–50. doi: 10.1016/j.nutres.2017.06.002. PubMed DOI PMC

Hwang H.J., Dornbos P., Steidemann M., Dunivin T.K., Rizzo M., LaPres J.J. Mitochondrial-targeted aryl hydrocarbon receptor and the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin on cellular respiration and the mitochondrial proteome. Toxicol. Appl. Pharmacol. 2016;304:121–132. doi: 10.1016/j.taap.2016.04.005. PubMed DOI PMC

Röhrig F., Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nat. Rev. Cancer. 2016;16:732–749. doi: 10.1038/nrc.2016.89. PubMed DOI

Santos C.R., Schulze A. Lipid metabolism in cancer: Lipid metabolism in cancer. FEBS J. 2012;279:2610–2623. doi: 10.1111/j.1742-4658.2012.08644.x. PubMed DOI

Else P.L. The highly unnatural fatty acid profile of cells in culture. Prog. Lipid. Res. 2020;77:101017. doi: 10.1016/j.plipres.2019.101017. PubMed DOI

Angrish M.M., Dominici C.Y., Zacharewski T.R. TCDD-elicited effects on liver, serum, and adipose lipid composition in C57BL/6 Mice. Toxicol. Sci. 2013;131:108–115. doi: 10.1093/toxsci/kfs277. PubMed DOI PMC

Kania-Korwel I., Wu X., Wang K., Lehmler H.-J. Identification of lipidomic markers of chronic 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) exposure in the male rat liver. Toxicology. 2017;390:124–134. doi: 10.1016/j.tox.2017.09.005. PubMed DOI PMC

Li F., Xiang B., Jin Y., Li C., Ren S., Wu Y., Li J., Luo Q. Hepatotoxic effects of inhalation exposure to polycyclic aromatic hydrocarbons on lipid metabolism of C57BL/6 mice. Environ. Int. 2020;134:105000. doi: 10.1016/j.envint.2019.105000. PubMed DOI

Liu Q., Zhang L., Allman E.L., Hubbard T.D., Murray I.A., Hao F., Tian Y., Gui W., Nichols R.G., Smith P.B., et al. The aryl hydrocarbon receptor activates ceramide biosynthesis in mice contributing to hepatic lipogenesis. Toxicology. 2021;458:152831. doi: 10.1016/j.tox.2021.152831. PubMed DOI PMC

Zaytseva Y.Y., Rychahou P.G., Gulhati P., Elliott V.A., Mustain W.C., O’Connor K., Morris A.J., Sunkara M., Weiss H.L., Lee E.Y., et al. Inhibition of fatty acid synthase attenuates CD44-associated signaling and reduces metastasis in colorectal cancer. Cancer Res. 2012;72:1504–1517. doi: 10.1158/0008-5472.CAN-11-4057. PubMed DOI PMC

Mason P., Liang B., Li L., Fremgen T., Murphy E., Quinn A., Madden S.L., Biemann H.-P., Wang B., Cohen A., et al. SCD1 inhibition causes cancer cell death by depleting mono-unsaturated fatty acids. PLoS ONE. 2012;7:e33823. doi: 10.1371/journal.pone.0033823. PubMed DOI PMC

Sanchez-Martinez R., Cruz-Gil S., Gomez de Cedron M., Alvarez-Fernandez M., Vargas T., Molina S., Garcia B., Herranz J., Moreno-Rubio J., Reglero G., et al. A link between lipid metabolism and epithelial-mesenchymal transition provides a target for colon cancer therapy. Oncotarget. 2015;6:38719–38736. doi: 10.18632/oncotarget.5340. PubMed DOI PMC

Cruz-Gil S., Sanchez-Martinez R., Gomez de Cedron M., Martin-Hernandez R., Vargas T., Molina S., Herranz J., Davalos A., Reglero G., Ramirez de Molina A. Targeting the lipid metabolic axis ACSL/SCD in colorectal cancer progression by therapeutic miRNAs: miR-19b-1 role. J. Lipid Res. 2018;59:14–24. doi: 10.1194/jlr.M076752. PubMed DOI PMC

Taniue K., Kurimoto A., Sugimasa H., Nasu E., Takeda Y., Iwasaki K., Nagashima T., Okada-Hatakeyama M., Oyama M., Kozuka-Hata H., et al. Long noncoding RNA UPAT promotes colon tumorigenesis by inhibiting degradation of UHRF1. Proc. Natl. Acad. Sci. USA. 2016;113:1273–1278. doi: 10.1073/pnas.1500992113. PubMed DOI PMC

Hoxhaj G., Manning B.D. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer. 2020;20:74–88. doi: 10.1038/s41568-019-0216-7. PubMed DOI PMC

Porstmann T., Santos C.R., Griffiths B., Cully M., Wu M., Leevers S., Griffiths J.R., Chung Y.-L., Schulze A. SREBP Activity Is Regulated by mTORC1 and Contributes to Akt-Dependent Cell Growth. Cell Metabol. 2008;8:224–236. doi: 10.1016/j.cmet.2008.07.007. PubMed DOI PMC

Wu R., Zhang L., Hoagland M.S., Swanson H.I. Lack of the aryl hydrocarbon receptor leads to impaired activation of AKT/Protein Kinase B and enhanced sensitivity to apoptosis induced via the intrinsic pathway. J. Pharmacol. Exp. Therap. 2006;320:448–457. doi: 10.1124/jpet.106.111773. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...