Humans and great apes cohabiting the forest ecosystem in central african republic harbour the same hookworms
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24651493
PubMed Central
PMC3961186
DOI
10.1371/journal.pntd.0002715
PII: PNTD-D-13-01019
Knihovny.cz E-zdroje
- MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- genotyp MeSH
- lidé MeSH
- mezerníky ribozomální DNA chemie genetika MeSH
- molekulární epidemiologie MeSH
- molekulární sekvence - údaje MeSH
- Necator klasifikace genetika izolace a purifikace MeSH
- nekatoriáza epidemiologie parazitologie veterinární MeSH
- nemoci primátů epidemiologie parazitologie MeSH
- Pan troglodytes MeSH
- primáti MeSH
- respirační komplex IV genetika MeSH
- sekvenční analýza DNA MeSH
- sekvenční homologie MeSH
- shluková analýza MeSH
- stromy * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Středoafrická republika epidemiologie MeSH
- Názvy látek
- mezerníky ribozomální DNA MeSH
- respirační komplex IV MeSH
BACKGROUND: Hookworms are important pathogens of humans. To date, Necator americanus is the sole, known species of the genus Necator infecting humans. In contrast, several Necator species have been described in African great apes and other primates. It has not yet been determined whether primate-originating Necator species are also parasitic in humans. METHODOLOGY/PRINCIPAL FINDINGS: The infective larvae of Necator spp. were developed using modified Harada-Mori filter-paper cultures from faeces of humans and great apes inhabiting Dzanga-Sangha Protected Areas, Central African Republic. The first and second internal transcribed spacers (ITS-1 and ITS-2) of nuclear ribosomal DNA and partial cytochrome c oxidase subunit 1 (cox1) gene of mtDNA obtained from the hookworm larvae were sequenced and compared. Three sequence types (I-III) were recognized in the ITS region, and 34 cox1 haplotypes represented three phylogenetic groups (A-C). The combinations determined were I-A, II-B, II-C, III-B and III-C. Combination I-A, corresponding to N. americanus, was demonstrated in humans and western lowland gorillas; II-B and II-C were observed in humans, western lowland gorillas and chimpanzees; III-B and III-C were found only in humans. Pairwise nucleotide difference in the cox1 haplotypes between the groups was more than 8%, while the difference within each group was less than 2.1%. CONCLUSIONS/SIGNIFICANCE: The distinctness of ITS sequence variants and high number of pairwise nucleotide differences among cox1 variants indicate the possible presence of several species of Necator in both humans and great apes. We conclude that Necator hookworms are shared by humans and great apes co-habiting the same tropical forest ecosystems.
Department of Anthropology Durham University Durham United Kingdom
Department of Biology Oita University Yufu Oita Japan
World Wildlife Foundation Dzanga Sangha Protected Areas Bangui Central African Republic
Zobrazit více v PubMed
Kondgen S, Kuhl H, N'Goran PK, Walsh PD, Schenk S, et al. (2008) Pandemic human viruses cause decline of endangered great apes. Curr Biol 18: 260–264. PubMed
Goodall J (1983) Population dynamics during a 15-year period in one community of free-living chimpanzees in the Gombe National Park, Tanzania. Z Tierpsychol 61: 1–60.
Palacios G, Lowenstine LJ, Cranfield MR, Gilardi KVK, Spelman L, et al. (2011) Human metapneumovirus infection in wild mountain gorillas, Rwanda. Emer Inf Dis 17: 711–713. PubMed PMC
Rwego IB, Isabirye-Basuta G, Gillespie TR, Goldberg TL (2008) Gastrointestinal bacterial transmission among humans, mountain gorillas, and livestock in Bwindi Impenetrable National Park, Uganda. Conserv Biol 22: 1600–1607. PubMed
Guillot J, Vermeulen B, Lafosse S, Chauffour S, Cibot M, et al. (2011) Nematodes of the genus Oesophagostomum: an emerging risk for humans and apes in Africa? Bull Acad Nat Med 195: 1955–1963. PubMed
Crompton DWT (1999) How much human helminthiasis is there in the world? J Parasitol 83: 397–403. PubMed
Hotez PJ, Bethony J, Bottazzi ME, Brooker S, Buss P (2005) Hookworm: “The great infection of mankind”. PLoS Medicine 2: 187–191 http://dx.doi.org/10.1371/journal.pmed.0020067. PubMed DOI PMC
de Silva NR, Brooker S, Hotez PJ, Montresor A, Engels D, et al. (2003) Soil-transmitted helminth infections: Updating the global picture. Trends Parasitol 19: 547–551. PubMed
Ashford RW, Crewe W (2003) The parasites of Homo sapiens. London: Taylor & Francis. 142p.
von Linstow O (1903) The American hookworm in chimpanzee. Am Med 6: 611.
Buckley JJC (1931) On two new species of Enterobius from the monkey Lagothrix humboldtii . J Helminthol 9: 133–140.
Dollfus RP, Chabaud AJ (1955) Cinq espèces de Nématodes chez un Atèle [Ateles ater (G. Cuvier 1823)] mort a la Ménagerie du Muséum. Arch Mus Histoire Nat 3: 27–40.
Orihel TC (1971) Necator americanus infection in primates. J Parasitol 57: 117–121. PubMed
Looss A (1911) The anatomy and life history of Agchylostoma duodenale Dub. A monograph. Part II: The development in the free state. Rec Sch Med 4: 159–613.
Cameron TWM, Myers BJ (1960) Manistrongylus meyeri (Travassosa, 1937) gen. nov., and Necator americanus from the pangolin. Can J Zool 38: 781–786.
Cummins SL (1912) The anatomy and life history of Agchylostoma duodenale (Dubini) by Prof. A. Looss. J Roy Army Med Corps 19: 42–55.
Gedoelst L (1916) Notes sur la faune parasitaire du Congo belge. Rev Zool Afr 5: 1–90.
Ackert JE, Payne FK (1922) Investigations on the control of hookworm disease. XII. Studies on the occurrence, distribution and morphology of Necator suillus, including descriptions of the other species of Necator . Am J Hyg 3: 1–25.
Noda R, Yamada H (1964) On two species of nematodes, Necator gorillae sp. nov. (Ancylostomidae) and Chitwoodspirura wehri Chabaud and Rousselot, 1956 (Spiruridae), from a gorilla. Bull Univ Osaka Pref Ser B 15: 175–180.
Kamiss A (2006) Recensement de la population des villages de la reserve speciale de Dzanga-Sanga (Année 2005). GTZ-APD. 25 p.
Remis MJ, Kpanou JB (2011) Primate and ungulate abundance in response to multi-use zoning and human extractive activities in a Central African Reserve. Afr J Ecol 49: 70–80.
Hasegawa H (2009) Methods of collection and identification of minute nematodes from the feces of primates, with special application to coevolutionary study of pinworms. In: Huffman MH, Chapman CA, editors. Primate Parasite Ecology. Cambridge University Press. pp. 29–46.
Little MD (1981) Differentiation of nematode larvae in coprocultures: Guidelines for routine practice in medical laboratories. WHO Tech Rep Ser 666: 144–150.
Gasser RB, Chilton NB, Hoste H, Beveridge I (1993) Rapid sequencing of rDNA from single worms and eggs of parasitic helminths. Nuc Acids Res 21: 2525–2526. PubMed PMC
Katayama T, Yamamoto M, Wada H, Satoh N (1993) Phylogenetic position of acoeltubellarians inferred from partial 18S rDNA sequences. Zool Sci 10: 529–36. PubMed
Hu M, Chilton NB, Gasser RB (2002) The mitochondrial genomes of the human hookworms, Ancylostoma duodenale and Necator americanus (Nematoda: Secernentea). Int J Parasitol 32: 145–158. PubMed
Hasegawa H, Sato H, Fujita S, Mbehang Nguema PP, Nobusue K, et al. (2010) Molecular identification of the causative agent of human strongyloidiasis acquired in Tanzania: Dispersal and diversity of Strongyloides spp. and their hosts. Parasitol Int 59: 407–413. PubMed
Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW. Nucleic Acids Res 22: 4673–4680. PubMed PMC
Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425. PubMed
Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10: 512–526. PubMed
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: molecular evolutionary genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739. PubMed PMC
Feldenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791. PubMed
Nadler SA, Adams BJ, Lyons ET, DeLong RL, Melin SR (2000) Molecular and morphometric evidence for separate species of Uncinaria (Nematoda: Ancylostomatidae) in California sea lions and northern fur seals: hypothesis testing supplants verification. J Parasitol 86: 1099–1106. PubMed
Romstad A, Gasser RB, Nansen P, Polderman AM, Chilton NB (1998) Necator americanus (Nematoda: Ancylostomatidae) from Africa and Malaysia have different ITS-2 rDNA sequences. Int J Parasitol 28: 611–615. PubMed
Monti JR, Chilton NB, Qian BZ, Gasser RB (1998) Specific amplification of Necator americanus or Ancylostoma duodenale DNA by PCR using markers in ITS-1 rDNA, and its implications. Mol Cell Probes 12: 71–78. PubMed
Ngui R, Lim YAL, Traub R, Mahmud R, Mistam MS (2012) Epidemiological and Genetic Data Supporting the Transmission of Ancylostoma ceylanicum among Human and Domestic Animals. PLoS Negl Trop Dis 6: e1522 doi:10.1371/journal.pntd.0001522 PubMed DOI PMC
Blom A, Almasvi A, Heitkönig IMA, Kpanou J-B, Prins HHT (2001) A survey of the apes in the Dzanga-Ndoki National Park, Central African Republic: a comparison between the census and survey methods of estimating the gorilla (Gorilla gorilla gorilla) and chimpanzee (Pan troglodytes) nest group density. Afr J Ecol 39: 98–105.
Gasser RB, De Gruijter JM, Polderman AM (2006) Insights into the epidemiology and genetic make-up of Oesophagostomum bifurcum from human and non-human primates using molecular tools. Parasitology 132: 453–460. PubMed
Michael S, Blouin M (2002) Molecular prospecting for cryptic species of nematodes: mitochondrial DNA versus internal transcribed spacer. Int J Parasitol 32: 527–531. PubMed
Traub RJ, Inpankaew T, Sutthikornchai C, Sukthana Y, Thompson RCA (2008) PCR-based coprodiagnostic tools reveal dogs as reservoirs of zoonotic ancylostomiasis caused by Ancylostoma ceylanicum in temple communities in Bangkok. Vet Parasit 155: 67–73. PubMed
Jiraanankul V, Aphijirawat W, Mungthin M, Khositnithikul R, Rangsin R, et al. (2011) Incidence and risk factors of hookworm infection in a rural community of central Thailand. Am J Trop Med Hyg 84: 594–598. PubMed PMC
Soil-transmitted helminth infections in free-ranging non-human primates from Cameroon and Gabon
Genetic characterization of nodular worm infections in Asian Apes
Mapping gastrointestinal gene expression patterns in wild primates and humans via fecal RNA-seq
An unexpected diversity of trypanosomatids in fecal samples of great apes
Metabarcoding analysis of strongylid nematode diversity in two sympatric primate species
Diversity of Mammomonogamus (Nematoda: Syngamidae) in large African herbivores
Testing parasite 'intimacy': the whipworm Trichuris muris in the European house mouse hybrid zone
Adult hookworms (Necator spp.) collected from researchers working with wild western lowland gorillas
Multiple Cross-Species Transmission Events of Human Adenoviruses (HAdV) during Hominine Evolution
GENBANK
AB793527, AB793528, AB793529, AB793530, AB793531, AB793532, AB793533, AB793534, AB793535, AB793536, AB793537, AB793538, AB793539, AB793540, AB793541, AB793542, AB793543, AB793544, AB793545, AB793546, AB793547, AB793548, AB793549, AB793550, AB793551, AB793552, AB793553, AB793554, AB793555, AB793556, AB793557, AB793558, AB793559, AB793560, AB793561, AB793562, AB793563, AB793564, AB793565, AB793566, AB793567, AB793568, AB793569, AB793570, AB793571