Mapping gastrointestinal gene expression patterns in wild primates and humans via fecal RNA-seq
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LH15175
Czech - US cooperation project LH - KONTAKT II
PubMed
31200636
PubMed Central
PMC6567582
DOI
10.1186/s12864-019-5813-z
PII: 10.1186/s12864-019-5813-z
Knihovny.cz E-zdroje
- Klíčová slova
- Gene expression, Nonhuman primate, Noninvasive method, RNA-seq,
- MeSH
- feces * MeSH
- gastrointestinální trakt metabolismus MeSH
- Gorilla gorilla genetika MeSH
- lidé MeSH
- messenger RNA genetika MeSH
- poly A genetika MeSH
- sekvenování transkriptomu * MeSH
- stanovení celkové genové exprese * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- messenger RNA MeSH
- poly A MeSH
BACKGROUND: Limited accessibility to intestinal epithelial tissue in wild animals and humans makes it challenging to study patterns of intestinal gene regulation, and hence to monitor physiological status and health in field conditions. To explore solutions to this limitation, we have used a noninvasive approach via fecal RNA-seq, for the quantification of gene expression markers in gastrointestinal cells of free-range primates and a forager human population. Thus, a combination of poly(A) mRNA enrichment and rRNA depletion methods was used in tandem with RNA-seq to quantify and compare gastrointestinal gene expression patterns in fecal samples of wild Gorilla gorilla gorilla (n = 9) and BaAka hunter-gatherers (n = 10) from The Dzanga Sangha Protected Areas, Central African Republic. RESULTS: Although only a small fraction (< 4.9%) of intestinal mRNA signals was recovered, the data was sufficient to detect significant functional differences between gorillas and humans, at the gene and pathway levels. These intestinal gene expression differences were specifically associated with metabolic and immune functions. Additionally, non-host RNA-seq reads were used to gain preliminary insights on the subjects' dietary habits, intestinal microbiomes, and infection prevalence, via identification of fungi, nematode, arthropod and plant RNA. CONCLUSIONS: Overall, the results suggest that fecal RNA-seq, targeting gastrointestinal epithelial cells can be used to evaluate primate intestinal physiology and gut gene regulation, in samples obtained in challenging conditions in situ. The approach used herein may be useful to obtain information on primate intestinal health, while revealing preliminary insights into foraging ecology, microbiome, and diet.
Department of Animal Science University of Minnesota Twin Cities USA
Department of Anthropology University of Colorado Boulder CO USA
Department of Ecology Evolution and Behavior University of Minnesota Twin Cities MN USA
Department of Genetics Cell Biology and Development University of Minnesota Twin Cities MN USA
Department of Zoology Faculty of Science Charles University Viničná 7 128 44 Praha Czech Republic
Liberec Zoo Lidové sady 425 1 460 01 Liberec Czech Republic
Loyola University Chicago Quinlan Life Sciences Building Chicago IL USA
The Czech Academy of Sciences Institute of Vertebrate Biology Květná 8 603 65 Brno Czech Republic
WWF Central African Republic Bangui Central African Republic
Zobrazit více v PubMed
Waits LP, Paetkau D. Noninvasive Genetic Sampling Tools for Wildlife Biologists: A Review of Applications and Recommendations for Accurate Data Collection. J Wildl Manag. 2005;69:1419–1433. doi: 10.2193/0022-541X(2005)69[1419:NGSTFW]2.0.CO;2. DOI
Städele V, Vigilant L. Strategies for determining kinship in wild populations using genetic data. Ecol Evol. 2016;6:6107–6120. doi: 10.1002/ece3.2346. PubMed DOI PMC
Arandjelovic M, Head J, Rabanal LI, Schubert G, Mettke E, Boesch C, et al. Non-invasive genetic monitoring of wild central chimpanzees. PLoS One. 2011;6:e14761. doi: 10.1371/journal.pone.0014761. PubMed DOI PMC
Guschanski K, Vigilant L, McNeilage A, Gray M, Kagoda E, Robbins MM. Counting elusive animals: Comparing field and genetic census of the entire mountain gorilla population of Bwindi Impenetrable National Park, Uganda. Biol Conserv. 2009;142:290–300. doi: 10.1016/j.biocon.2008.10.024. DOI
Hagemann L, Boesch C, Robbins MM, Arandjelovic M, Deschner T, Lewis M, et al. Long-term group membership and dynamics in a wild western lowland gorilla population (Gorilla gorilla gorilla) inferred using non-invasive genetics. Am J Primatol. 2018;80:e22898. doi: 10.1002/ajp.22898. PubMed DOI
Roy J, Vigilant L, Gray M, Wright E, Kato R, Kabano P, et al. Challenges in the use of genetic mark-recapture to estimate the population size of Bwindi mountain gorillas (Gorilla beringei beringei) Biol Conserv. 2014;180:249–261. doi: 10.1016/j.biocon.2014.10.011. DOI
Jeffery KJ, Abernethy KA, Tutin CEG, Anthony NA, Bruford MW. Who killed Porthos? Genetic tracking of a gorilla death. Integr Zool. 2007;2:111–119. doi: 10.1111/j.1749-4877.2007.00050.x. PubMed DOI
Thalmann O, Fischer A, Lankester F, Pääbo S, Vigilant L. The complex evolutionary history of gorillas: insights from genomic data. Mol Biol Evol. 2007;24:146–158. doi: 10.1093/molbev/msl160. PubMed DOI
Heymann EW, Culot L, Knogge C, Noriega Piña TE, Tirado Herrera ER, Klapproth M, et al. Long-term consistency in spatial patterns of primate seed dispersal. Ecol Evol. 2017;7:1435–1441. doi: 10.1002/ece3.2756. PubMed DOI PMC
Srivathsan A, Ang A, Vogler AP, Meier R. Fecal metagenomics for the simultaneous assessment of diet, parasites, and population genetics of an understudied primate. Front Zool. 2016;13:17. doi: 10.1186/s12983-016-0150-4. PubMed DOI PMC
Mallott EK, Garber PA, Malhi RS. trnL outperforms rbcL as a DNA metabarcoding marker when compared with the observed plant component of the diet of wild white-faced capuchins (Cebus capucinus, Primates) PLoS One. 2018;13:e0199556. doi: 10.1371/journal.pone.0199556. PubMed DOI PMC
Mallott EK, Garber PA, Malhi RS. Integrating feeding behavior, ecological data, and DNA barcoding to identify developmental differences in invertebrate foraging strategies in wild white-faced capuchins (Cebus capucinus) Am J Phys Anthropol. 2017;162:241–254. doi: 10.1002/ajpa.23113. PubMed DOI
Perry GH, Marioni JC, Melsted P, Gilad Y. Genomic-scale capture and sequencing of endogenous DNA from feces. Mol Ecol. 2010;19:5332–5344. doi: 10.1111/j.1365-294X.2010.04888.x. PubMed DOI PMC
Fassbinder-Orth CA. Methods for quantifying gene expression in ecoimmunology: from qPCR to RNA-Seq. Integr Comp Biol. 2014;54:396–406. doi: 10.1093/icb/icu023. PubMed DOI
Rosa F, Busato S, Avaroma FC, Linville K, Trevisi E, Osorio JS, et al. Transcriptional changes detected in fecal RNA of neonatal dairy calves undergoing a mild diarrhea are associated with inflammatory biomarkers. PLoS One. 2018;13:e0191599. doi: 10.1371/journal.pone.0191599. PubMed DOI PMC
Chapkin RS, Zhao C, Ivanov I, Davidson LA, Goldsby JS, Lupton JR, et al. Noninvasive stool-based detection of infant gastrointestinal development using gene expression profiles from exfoliated epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2010;298:G582–G589. doi: 10.1152/ajpgi.00004.2010. PubMed DOI PMC
Knight JM, Davidson LA, Herman D, Martin CR, Goldsby JS, Ivanov IV, et al. Non-invasive analysis of intestinal development in preterm and term infants using RNA-Sequencing. Sci Rep. 2014;4:5453. doi: 10.1038/srep05453. PubMed DOI PMC
Davidson LA, Aymond CM, Jiang YH, Turner ND, Lupton JR, Chapkin RS. Non-invasive detection of fecal protein kinase C betaII and zeta messenger RNA: putative biomarkers for colon cancer. Carcinogenesis. 1998;19:253–257. doi: 10.1093/carcin/19.2.253. PubMed DOI
Whitfield-Cargile CM, Cohen ND, He K, Ivanov I, Goldsby JS, Chamoun-Emanuelli A, et al. The non-invasive exfoliated transcriptome (exfoliome) reflects the tissue-level transcriptome in a mouse model of NSAID enteropathy. Sci Rep. 2017;7:14687. doi: 10.1038/s41598-017-13999-5. PubMed DOI PMC
Stauber J, Shaikh N, Ordiz MI, Tarr PI, Manary MJ. Droplet digital PCR quantifies host inflammatory transcripts in feces reliably and reproducibly. Cell Immunol. 2016;303:43–49. doi: 10.1016/j.cellimm.2016.03.007. PubMed DOI PMC
Anders S, Huber W. Differential expression of RNA-Seq data at the gene level--the DESeq package. Heidelberg, Germany: European Molecular Biology Laboratory (EMBL). 2012. http://www.genomatix.de/online_help/help_regionminer/DESeq_1.10.1.pdf.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Krämer A, Green J, Pollard J, Jr, Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics. 2014;30:523–530. doi: 10.1093/bioinformatics/btt703. PubMed DOI PMC
Potten CS, Schofield R, Lajtha LG. A comparison of cell replacement in bone marrow, testis and three regions of surface epithelium. Biochim Biophys Acta. 1979;560:281–299. PubMed
Donovan SM, Wang M, Monaco MH, Martin CR, Davidson LA, Ivanov I, et al. Noninvasive molecular fingerprinting of host-microbiome interactions in neonates. FEBS Lett. 2014;588:4112–4119. doi: 10.1016/j.febslet.2014.07.008. PubMed DOI PMC
Davidson LA, Lupton JR, Miskovsky E, Fields AP, Chapkin RS. Quantification of human intestinal gene expression profiles using exfoliated colonocytes: a pilot study. Biomarkers. 2003;8:51–61. doi: 10.1080/1354750021000042268. PubMed DOI
Zhao W, He X, Hoadley KA, Parker JS, Hayes DN, Perou CM. Comparison of RNA-Seq by poly (A) capture, ribosomal RNA depletion, and DNA microarray for expression profiling. BMC Genomics. 2014;15:419. doi: 10.1186/1471-2164-15-419. PubMed DOI PMC
Zhao S, Zhang Y, Gamini R, Zhang B, von Schack D. Evaluation of two main RNA-seq approaches for gene quantification in clinical RNA sequencing: polyA+ selection versus rRNA depletion. Sci Rep. 2018;8:4781. doi: 10.1038/s41598-018-23226-4. PubMed DOI PMC
Albaugh GP, Iyengar V, Lohani A, Malayeri M, Bala S, Nair PP. Isolation of exfoliated colonic epithelial cells, a novel, non-invasive approach to the study of cellular markers. Int J Cancer. 1992;52:347–350. doi: 10.1002/ijc.2910520303. PubMed DOI
Kamra A, Kessie G, Chen J-H, Kalavapudi S, Shores R, McElroy I, et al. Exfoliated colonic epithelial cells: surrogate targets for evaluation of bioactive food components in cancer prevention. J Nutr. 2005;135:2719–2722. doi: 10.1093/jn/135.11.2719. PubMed DOI
Kaeffer B, Des Robert C, Alexandre-Gouabau M-C, Pagniez A, Legrand A, Amarger V, et al. Recovery of Exfoliated Cells From the Gastrointestinal Tract of Premature Infants: A New Tool to Perform “Noninvasive Biopsies?”. Pediatr Res. 2007;62:564. doi: 10.1203/PDR.0b013e318155a402. PubMed DOI
Schulz D, Qablan MA, Profousova-Psenkova I, Vallo P, Fuh T, Modry D, et al. Anaerobic Fungi in Gorilla (Gorilla gorilla gorilla) Feces: an Adaptation to a High-Fiber Diet? Int J Primatol. 2018;39:567–580. doi: 10.1007/s10764-018-0052-8. DOI
Hamad I, Delaporte E, Raoult D, Bittar F. Detection of termites and other insects consumed by African great apes using molecular fecal analysis. Sci Rep. 2014;4:4478. doi: 10.1038/srep04478. PubMed DOI PMC
Doran DM, McNeilage A, Greer D, Bocian C, Mehlman P, Shah N. Western lowland gorilla diet and resource availability: new evidence, cross-site comparisons, and reflections on indirect sampling methods. American Journal of Primatology: Official Journal of the American Society of Primatologists. 2002;58:91–116. doi: 10.1002/ajp.10053. PubMed DOI
Remis MJ, Jost Robinson CA. Examining short-term nutritional status among BaAka foragers in transitional economies. Am J Phys Anthropol. 2014;154:365–375. doi: 10.1002/ajpa.22521. PubMed DOI
Morris B. Insects as food among hunter-gatherers. Anthropol Today. 2008;24:6–8. doi: 10.1111/j.1467-8322.2008.00558.x. DOI
Hasegawa H, Modrý D, Kitagawa M, Shutt KA, Todd A, Kalousová B, et al. Humans and great apes cohabiting the forest ecosystem in central african republic harbour the same hookworms. PLoS Negl Trop Dis. 2014;8:e2715. doi: 10.1371/journal.pntd.0002715. PubMed DOI PMC
Bertrand K. Survival of exfoliated epithelial cells: a delicate balance between anoikis and apoptosis. J Biomed Biotechnol. 2011;2011:534139. PubMed PMC
Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011;13:517–526. doi: 10.1016/j.cmet.2011.02.018. PubMed DOI PMC
Popovich DG, Jenkins DJA, Kendall CWC, Dierenfeld ES, Carroll RW, Tariq N, et al. The Western Lowland Gorilla Diet Has Implications for the Health of Humans and Other Hominoids. J Nutr. 1997;127:2000–2005. doi: 10.1093/jn/127.10.2000. PubMed DOI
Maddox CE, Laur LM, Tian L. Antibacterial activity of phenolic compounds against the phytopathogen Xylella fastidiosa. Curr Microbiol. 2010;60:53–58. doi: 10.1007/s00284-009-9501-0. PubMed DOI PMC
May T, Mackie RI, Fahey GC, Jr, Cremin JC, Garleb KA. Effect of fiber source on short-chain fatty acid production and on the growth and toxin production by Clostridium difficile. Scand J Gastroenterol. 1994;29:916–922. doi: 10.3109/00365529409094863. PubMed DOI
Ning Y, Lenz H-J. Targeting IL-8 in colorectal cancer. Expert Opin Ther Targets. 2012;16:491–497. doi: 10.1517/14728222.2012.677440. PubMed DOI
David Justin, Dominguez Charli, Hamilton Duane, Palena Claudia. The IL-8/IL-8R Axis: A Double Agent in Tumor Immune Resistance. Vaccines. 2016;4(3):22. doi: 10.3390/vaccines4030022. PubMed DOI PMC
Jarvis JP, Scheinfeldt LB, Soi S, Lambert C, Omberg L, Ferwerda B, et al. Patterns of ancestry, signatures of natural selection, and genetic association with stature in Western African pygmies. PLoS Genet. 2012;8:e1002641. doi: 10.1371/journal.pgen.1002641. PubMed DOI PMC
Migliano AB, Vinicius L, Lahr MM. Life history trade-offs explain the evolution of human pygmies. Proc Natl Acad Sci U S A. 2007;104:20216–20219. doi: 10.1073/pnas.0708024105. PubMed DOI PMC
Gomez A, Petrzelkova KJ, Burns MB, Yeoman CJ, Amato KR, Vlckova K, et al. Gut Microbiome of Coexisting BaAka Pygmies and Bantu Reflects Gradients of Traditional Subsistence Patterns. Cell Rep. 2016;14:2142–2153. doi: 10.1016/j.celrep.2016.02.013. PubMed DOI
Watanabe N, Mashima H, Miura K, Goto T, Yoshida M, Goto A, et al. Requirement of Gαq/Gα11 Signaling in the Preservation of Mouse Intestinal Epithelial Homeostasis. Cell Mol Gastroenterol Hepatol. 2016;2:767–782. doi: 10.1016/j.jcmgh.2016.08.001. PubMed DOI PMC
Carneiro PP, Conceição J, Macedo M, Magalhães V, Carvalho EM, Bacellar O. The Role of Nitric Oxide and Reactive Oxygen Species in the Killing of Leishmania braziliensis by Monocytes from Patients with Cutaneous Leishmaniasis. PLoS One. 2016;11:e0148084. doi: 10.1371/journal.pone.0148084. PubMed DOI PMC
Yanagisawa N, Shimada K, Miyazaki T, Kume A, Kitamura Y, Sumiyoshi K, et al. Enhanced production of nitric oxide, reactive oxygen species, and pro-inflammatory cytokines in very long chain saturated fatty acid-accumulated macrophages. Lipids Health Dis. 2008;7:48. doi: 10.1186/1476-511X-7-48. PubMed DOI PMC
Lee S-J, Leoni G, Neumann P-A, Chun J, Nusrat A, Yun CC. Distinct phospholipase C-β isozymes mediate lysophosphatidic acid receptor 1 effects on intestinal epithelial homeostasis and wound closure. Mol Cell Biol. 2013;33:2016–2028. doi: 10.1128/MCB.00038-13. PubMed DOI PMC
Wang P-Y, Wang SR, Xiao L, Chen J, Wang J-Y, Rao JN. c-Jun enhances intestinal epithelial restitution after wounding by increasing phospholipase C-γ1 transcription. Am J Phys Cell Phys. 2017;312:C367–C375. doi: 10.1152/ajpcell.00330.2016. PubMed DOI PMC
Cipolletta C. Effects of group dynamics and diet on the ranging patterns of a western gorilla group (Gorilla gorilla gorilla) at Bai Hokou, Central African Republic. Am J Primatol. 2004;64:193–205. doi: 10.1002/ajp.20072. PubMed DOI
Shutt K, Heistermann M, Kasim A, Todd A, Kalousova B, Profosouva I, et al. Effects of habituation, research and ecotourism on faecal glucocorticoid metabolites in wild western lowland gorillas: Implications for conservation management. Biol Conserv. 2014;172:72–79. doi: 10.1016/j.biocon.2014.02.014. DOI
Blom A, van Zalinge R, Mbea E, Heitkonig IMA, Prins HHT. Human impact on wildlife populations within a protected Central African forest. Afr J Ecol. 2004;42:23–31. doi: 10.1111/j.0141-6707.2004.00441.x. DOI
Remis MJ, Jost Robinson CA. Reductions in primate abundance and diversity in a multiuse protected area: synergistic impacts of hunting and logging in a congo basin forest. Am J Primatol. 2012;74:602–612. doi: 10.1002/ajp.22012. PubMed DOI
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–527. doi: 10.1038/nbt.3519. PubMed DOI
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Huerta-Cepas J, Serra F, Bork P. ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data. Mol Biol Evol. 2016;33:1635–1638. doi: 10.1093/molbev/msw046. PubMed DOI PMC