No impact of strongylid infections on the detection of Plasmodium spp. in faeces of western lowland gorillas and eastern chimpanzees
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28446233
PubMed Central
PMC5406944
DOI
10.1186/s12936-017-1822-z
PII: 10.1186/s12936-017-1822-z
Knihovny.cz E-zdroje
- Klíčová slova
- Co-infection, Eastern chimpanzee, Faeces, Malaria, Necator spp., Plasmodium spp., Strongylid, Western lowland gorilla,
- MeSH
- Ancylostoma fyziologie MeSH
- ankylostomóza parazitologie MeSH
- feces chemie MeSH
- Gorilla gorilla * MeSH
- malárie epidemiologie parazitologie veterinární MeSH
- Necator fyziologie MeSH
- nekatoriáza parazitologie MeSH
- nemoci lidoopů epidemiologie parazitologie MeSH
- Pan troglodytes * MeSH
- Plasmodium izolace a purifikace MeSH
- protozoální DNA analýza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Středoafrická republika epidemiologie MeSH
- Uganda epidemiologie MeSH
- Názvy látek
- protozoální DNA MeSH
BACKGROUND: Although a high genetic diversity of Plasmodium spp. circulating in great apes has been revealed recently due to non-invasive methods enabling detection in faecal samples, little is known about the actual mechanisms underlying the presence of Plasmodium DNA in faeces. Great apes are commonly infected by strongylid nematodes, including hookworms, which cause intestinal bleeding. The impact of strongylid infections on the detection of Plasmodium DNA in faeces was assessed in wild, western, lowland gorillas from Dzanga Sangha Protected Areas, Central African Republic and eastern chimpanzees from Kalinzu Forest Reserve, Uganda. METHODS: Fifty-one faecal samples from 22 habituated gorillas and 74 samples from 15 habituated chimpanzees were analysed using Cytochrome-b PCR assay and coprological methods. RESULTS: Overall, 26.4% of the analysed samples were positive for both Plasmodium spp. and strongylids. However, the results showed no significant impact of intensity of infections of strongylids on detection of Plasmodium DNA in gorilla and chimpanzee faeces. CONCLUSION: Bleeding caused by strongylid nematode Necator spp. cannot explain the presence of Plasmodium DNA in ape faeces.
Faculty of Science Masaryk University Kotlářská 267 2 611 37 Brno Czech Republic
Institute of Vertebrate Biology Czech Academy of Sciences Květná 8 603 00 Brno Czech Republic
Liberec Zoo Lidové sady 425 1 460 01 Liberec Czech Republic
Primate Research Institute Kyoto University Kanrin Inuyama Aichi 484 8506 Japan
WWF Dzanga Sangha Protected Areas BP 1053 Bangui Central African Republic
Zobrazit více v PubMed
Petney TN, Andrews RH. Multiparasite communities in animals and humans: frequency, structure and pathogenic significance. Int J Parasitol. 1998;28:377–393. doi: 10.1016/S0020-7519(97)00189-6. PubMed DOI
Mwangi TW, Bethony JM, Brooker S. Malaria and helminth interactions in humans: an epidemiological viewpoint. Ann Trop Med Parasitol. 2006;100:551–570. doi: 10.1179/136485906X118468. PubMed DOI PMC
Liu W, Li Y, Learn GH, Rudicell RS, Robertson JD, Keele BF, et al. Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature. 2010;476:420–425. PubMed PMC
Jirků M, Pomajbíková K, Petrželková KJ, Hůzová Z, Modrý D, Lukeš J. Detection of Plasmodium spp. in human feces. Emerg Infect Dis. 2012;18:634–636. PubMed PMC
Mapua MI, Qablan MA, Pomajbíková K, Petrželková KJ, Rádrová J, Votýpka J, et al. Ecology of malaria infections in western lowland gorillas inhabiting Dzanga Sangha Protected Areas, Central African Republic. Parasitology. 2015;142:890–900. doi: 10.1017/S0031182015000086. PubMed DOI
Abkallo HM, Liu W, Hokama S, Ferreira PE, Nakazawa S, Maeno Y, et al. DNA from pre-erythrocytic stage malaria parasites is detectable by PCR in the feces and blood of hosts. Int J Parasitol. 2014;144:467–473. doi: 10.1016/j.ijpara.2014.03.002. PubMed DOI
Huffman MA, Gotoh S, Turner L, Yoshida K. Seasonal trends in intestinal nematode infection and medicinal plant use among chimpanzees in the Mahale Mountains, Tanzania. Primates. 1997;38:111–125. doi: 10.1007/BF02382002. DOI
Makouloutou P, Mbehang Nguema PP, Fujita S, Takenoshita Y, Hasegawa H, Yanagida T, et al. Prevalence and genetic diversity of Oesophagostomum stephanostomum in wild lowland gorillas at Moukalaba-Doudou National Park, Gabon. Helminthologia. 2014;51:83–93. doi: 10.2478/s11687-014-0214-y. DOI
Hasegawa H, Modrý D, Kitagawa M, Shutt KA, Todd A, Kalousová B, et al. Humans and great apes cohabiting the forest ecosystem in Central African Republic harbour the same hookworms. PLoS Negl Trop Dis. 2014;8:e2715. doi: 10.1371/journal.pntd.0002715. PubMed DOI PMC
Hotez PJ, Brooker S, Bethony JM, Bottazzi ME, Loukas A, Xiao SH. Hookworm infection. N Engl J Med. 2004;351:799–807. doi: 10.1056/NEJMra032492. PubMed DOI
Yasuoka H, Kimura D, Hashimoto C, Furuichi T. Quantitative assessment of livelihoods around great ape reserves: cases in Luo Scientific Reserve, DR Congo, and Kalinzu Forest Reserve, Uganda. Afr Study Monogr. 2012;43:137–159.
Sheather AL. The detection of intestinal protozoa and mange parasites by flotation technique. J Comp Pathol. 1923;36:266–275. doi: 10.1016/S0368-1742(23)80052-2. DOI
Blagg W, Schloegel EL, Mansour NS, Khalaf GI. A new concentration technique for the demonstration of protozoa and helminth eggs in feces. Am J Trop Med Hyg. 1955;4:23–28. PubMed
Kalousová B. Gastrointestinal parasites of wild western lowland gorillas (Gorilla gorilla gorilla) in Dzanga Sector of Dzanga-Ndoki National Park, Central African Republic. M.S. Thesis, Masaryk University; 2013. p. 39–41.
Nosanchuk JS, Wade SE, Landolf M. Case-report of and description of parasites in Mamomonogamus laryngeus (human synga-mosis) infection. J Clin Microbiol. 1995;33:998–1000. PubMed PMC
R Development Core Team. R: a language and environment for statistical computing. Vienna, Austria: The R Foundation for Statistical Computing. 2011. ISBN 3-900051-07-0. http://www.R-project.org/.
Mapua MI, Petrželková KJ, Burgunder J, Dadáková E, Brožová K, Hrazdilová K, et al. A comparative molecular survey of malaria prevalence among Eastern chimpanzee populations in Issa Valley (Tanzania) and Kalinzu (Uganda) Malar J. 2016;15:423. doi: 10.1186/s12936-016-1476-2. PubMed DOI PMC
Robertson LJ, Crompton DW, Sanjur D, Nesheim MC. Haemoglobin concentrations and concomitant infections of hookworm and Trichuris trichiura in Panamanian primary school children. Trans R Soc Trop Med Hyg. 1992;86:654–656. doi: 10.1016/0035-9203(92)90176-D. PubMed DOI
Cabaret J, Gasnier N, Jacquiet P. Faecal egg counts are representative of digestive-tract strongyle worm burdens in sheep and goats. Parasite. 1998;5:137–142. doi: 10.1051/parasite/1998052137. PubMed DOI
Seivwright LJ, Redpath SM, Mougeot F, Watt L, Hudson PJ. Faecal egg counts provide a reliable measure of Trichostrongylus tenuis intensities in free-living red grouse Lagopus lagopus scoticus. J Helminthol. 2004;78:69–76. doi: 10.1079/JOH2003220. PubMed DOI
Leoutsakos B, Agnadi N, Kolisiatis S. Rectal bleeding due to Oesophagostomum brumpti: report of a case. Dis Colon Rectum. 1977;20:632–634. doi: 10.1007/BF02586633. PubMed DOI
Krief S, Jamart A, Mahé S, Leendertz FH, Mätz-Rensing K, Crespeau F, et al. Clinical and pathologic manifestation of oesophagostomosis in African great apes: does self-medication in wild apes influence disease progression? J Med Primatol. 2008;37:188–195. doi: 10.1111/j.1600-0684.2008.00285.x. PubMed DOI
Buffet PA, Safeukui I, Deplaine G, Brousse V, Prendki V, Thellier M, et al. The pathogenesis of Plasmodium falciparum malaria in humans: insights from splenic physiology. Blood. 2011;117:381–392. doi: 10.1182/blood-2010-04-202911. PubMed DOI PMC
Helmby H. Pathology exacerbates malaria-induced liver gastrointestinal nematode infection. J Immunol. 2009;182:5663–5671. doi: 10.4049/jimmunol.0803790. PubMed DOI PMC